preston-cell's picture
Update app.py
efa273d verified
raw
history blame
2.59 kB
import gradio as gr
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
from datasets import load_dataset
import torch
import numpy as np
# Load BLIP model for image captioning
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Load SpeechT5 model for text-to-speech
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
# Load Florence-2 model for OCR
ocr_device = "cuda:0" if torch.cuda.is_available() else "cpu"
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
ocr_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=ocr_dtype, trust_remote_code=True).to(ocr_device)
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
# Load speaker embedding
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def process_image(image):
try:
# Generate caption from the image
caption = caption_model(image)[0]['generated_text']
# Convert caption to speech
speech = synthesiser(
caption,
forward_params={"speaker_embeddings": speaker_embedding}
)
# Extract text (OCR) using Florence-2
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
generated_ids = ocr_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=4096,
num_beams=3,
do_sample=False
)
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Prepare audio data
audio = np.array(speech["audio"])
rate = speech["sampling_rate"]
# Return audio, caption, and extracted text
return (rate, audio), caption, extracted_text
except Exception as e:
return None, f"Error: {str(e)}", ""
# Gradio Interface
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type='pil', label="Upload an Image"),
outputs=[
gr.Audio(label="Generated Audio"),
gr.Textbox(label="Generated Caption"),
gr.Textbox(label="Extracted Text (OCR)")
],
title="SeeSay with SpeechT5 and Florence-2 OCR",
description="Upload an image to generate a caption, hear it described with SpeechT5's speech synthesis, and extract text using Florence-2 OCR."
)
iface.launch()