preston-cell's picture
Update app.py
a0edfdb verified
raw
history blame
3.69 kB
import gradio as gr
import torch
import numpy as np
from PIL import Image
from transformers import (
pipeline,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
TextStreamer,
)
from datasets import load_dataset
# Use CPU if no GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print(f"Device set to use {device}")
# Load image captioning model (BLIP)
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base", device=device)
# Load OCR model (Florence-2-base)
ocr_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base", trust_remote_code=True, torch_dtype=dtype
).to(device)
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
# Load SmallDoge model for context generation
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
doge_model = AutoModelForCausalLM.from_pretrained(
"SmallDoge/Doge-320M-Instruct", trust_remote_code=True
).to(device)
doge_config = GenerationConfig(
max_new_tokens=100,
use_cache=True,
do_sample=True,
temperature=0.8,
top_p=0.9,
repetition_penalty=1.0
)
# Load SpeechT5 for TTS
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts", device=device)
# Use known compatible 600-dim speaker embedding
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Shape: [1, 600]
def process_image(image):
try:
# Caption generation
caption = caption_model(image)[0]['generated_text']
# OCR extraction
ocr_inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(device)
ocr_outputs = ocr_model.generate(
input_ids=ocr_inputs["input_ids"],
pixel_values=ocr_inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False,
)
extracted_text = ocr_processor.batch_decode(ocr_outputs, skip_special_tokens=True)[0]
# Context generation using Doge
prompt = f"Determine the context of this image based on the caption and extracted text.\nCaption: {caption}\nExtracted text: {extracted_text}\nContext:"
conversation = [{"role": "user", "content": prompt}]
doge_inputs = doge_tokenizer.apply_chat_template(conversation, tokenize=True, return_tensors="pt").to(device)
doge_output = doge_model.generate(doge_inputs, generation_config=doge_config)
context = doge_tokenizer.decode(doge_output[0], skip_special_tokens=True)
# Convert context to speech
speech = synthesiser(
context,
forward_params={"speaker_embeddings": speaker_embedding}
)
audio = np.array(speech["audio"])
rate = speech["sampling_rate"]
return (rate, audio), caption, extracted_text, context
except Exception as e:
return None, f"Error: {str(e)}", "", ""
# Gradio UI
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type='pil', label="Upload an Image"),
outputs=[
gr.Audio(label="Generated Audio"),
gr.Textbox(label="Generated Caption"),
gr.Textbox(label="Extracted Text (OCR)"),
gr.Textbox(label="Generated Context")
],
title="SeeSay Contextualizer with Doge + SpeechT5",
description="Upload an image to generate a caption, extract OCR text, determine context with Doge-320M, and hear it with SpeechT5."
)
iface.launch(share=True)