Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,83 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from transformers import (
|
3 |
pipeline,
|
4 |
-
AutoProcessor,
|
5 |
AutoModelForCausalLM,
|
|
|
6 |
AutoTokenizer,
|
7 |
GenerationConfig,
|
8 |
-
TextStreamer,
|
9 |
-
set_seed
|
10 |
)
|
11 |
-
import torch
|
12 |
-
import numpy as np
|
13 |
-
import requests
|
14 |
-
import io
|
15 |
from datasets import load_dataset
|
|
|
16 |
|
17 |
-
# Set device
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
20 |
-
|
21 |
|
22 |
-
#
|
23 |
-
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base", device=
|
24 |
|
25 |
-
#
|
26 |
-
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts"
|
27 |
|
28 |
-
#
|
29 |
-
ocr_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
30 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
31 |
|
32 |
-
# Load
|
33 |
-
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
34 |
doge_model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M-Instruct", trust_remote_code=True).to(device)
|
35 |
-
|
36 |
max_new_tokens=100,
|
37 |
use_cache=True,
|
38 |
do_sample=True,
|
39 |
temperature=0.8,
|
40 |
top_p=0.9,
|
41 |
-
repetition_penalty=1.0
|
42 |
)
|
43 |
|
44 |
-
# Load speaker embedding
|
45 |
-
|
46 |
-
|
47 |
-
buffer = io.BytesIO(response.content)
|
48 |
-
speaker_embedding = torch.tensor(np.load(buffer, allow_pickle=True)).unsqueeze(0) # Shape: [1, 600]
|
49 |
if speaker_embedding.shape[1] < 600:
|
50 |
raise ValueError("No suitable speaker embedding of at least 600 dimensions found.")
|
51 |
|
52 |
-
|
53 |
def process_image(image):
|
54 |
try:
|
55 |
-
# Generate caption
|
56 |
caption = caption_model(image)[0]['generated_text']
|
57 |
|
58 |
-
# OCR
|
59 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(device, torch_dtype)
|
60 |
generated_ids = ocr_model.generate(
|
61 |
input_ids=inputs["input_ids"],
|
62 |
pixel_values=inputs["pixel_values"],
|
63 |
-
max_new_tokens=
|
64 |
do_sample=False,
|
65 |
-
num_beams=3
|
66 |
)
|
67 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
|
69 |
-
# Generate context using
|
70 |
-
prompt = f"Determine the context of this image based on the caption and extracted text
|
71 |
conversation = [{"role": "user", "content": prompt}]
|
72 |
-
|
73 |
conversation=conversation, tokenize=True, return_tensors="pt"
|
74 |
).to(device)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Text-to-Speech
|
80 |
-
speech = synthesiser(
|
81 |
-
context,
|
82 |
-
forward_params={"speaker_embeddings": speaker_embedding}
|
83 |
)
|
|
|
|
|
|
|
|
|
84 |
audio = np.array(speech["audio"])
|
85 |
rate = speech["sampling_rate"]
|
86 |
|
@@ -89,6 +86,7 @@ def process_image(image):
|
|
89 |
except Exception as e:
|
90 |
return None, f"Error: {str(e)}", "", ""
|
91 |
|
|
|
92 |
# Gradio UI
|
93 |
iface = gr.Interface(
|
94 |
fn=process_image,
|
@@ -99,8 +97,8 @@ iface = gr.Interface(
|
|
99 |
gr.Textbox(label="Extracted Text (OCR)"),
|
100 |
gr.Textbox(label="Generated Context")
|
101 |
],
|
102 |
-
title="SeeSay Contextualizer",
|
103 |
-
description="Upload an image to generate a caption, extract text
|
104 |
)
|
105 |
|
106 |
iface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
from transformers import (
|
5 |
pipeline,
|
|
|
6 |
AutoModelForCausalLM,
|
7 |
+
AutoProcessor,
|
8 |
AutoTokenizer,
|
9 |
GenerationConfig,
|
|
|
|
|
10 |
)
|
|
|
|
|
|
|
|
|
11 |
from datasets import load_dataset
|
12 |
+
from PIL import Image
|
13 |
|
14 |
+
# Set device and dtype
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
17 |
+
print(f"Device set to use {device}")
|
18 |
|
19 |
+
# Load image captioning model
|
20 |
+
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base", device=device)
|
21 |
|
22 |
+
# Load text-to-speech model
|
23 |
+
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
24 |
|
25 |
+
# Load Florence-2-base for OCR
|
26 |
+
ocr_model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
"microsoft/Florence-2-base", torch_dtype=torch_dtype, trust_remote_code=True
|
28 |
+
).to(device)
|
29 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
30 |
|
31 |
+
# Load Doge model for context generation
|
32 |
+
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct", trust_remote_code=True)
|
33 |
doge_model = AutoModelForCausalLM.from_pretrained("SmallDoge/Doge-320M-Instruct", trust_remote_code=True).to(device)
|
34 |
+
generation_config = GenerationConfig(
|
35 |
max_new_tokens=100,
|
36 |
use_cache=True,
|
37 |
do_sample=True,
|
38 |
temperature=0.8,
|
39 |
top_p=0.9,
|
40 |
+
repetition_penalty=1.0,
|
41 |
)
|
42 |
|
43 |
+
# Load speaker embedding
|
44 |
+
embedding_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
45 |
+
speaker_embedding = torch.tensor(embedding_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
|
|
46 |
if speaker_embedding.shape[1] < 600:
|
47 |
raise ValueError("No suitable speaker embedding of at least 600 dimensions found.")
|
48 |
|
49 |
+
|
50 |
def process_image(image):
|
51 |
try:
|
52 |
+
# Generate image caption
|
53 |
caption = caption_model(image)[0]['generated_text']
|
54 |
|
55 |
+
# Run OCR using Florence-2-base
|
56 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(device, torch_dtype)
|
57 |
generated_ids = ocr_model.generate(
|
58 |
input_ids=inputs["input_ids"],
|
59 |
pixel_values=inputs["pixel_values"],
|
60 |
+
max_new_tokens=1024,
|
61 |
do_sample=False,
|
62 |
+
num_beams=3,
|
63 |
)
|
64 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
65 |
|
66 |
+
# Generate context using Doge model
|
67 |
+
prompt = f"Determine the context of this image based on the caption and extracted text. Caption: {caption}. Extracted text: {extracted_text}. Context:"
|
68 |
conversation = [{"role": "user", "content": prompt}]
|
69 |
+
doge_inputs = doge_tokenizer.apply_chat_template(
|
70 |
conversation=conversation, tokenize=True, return_tensors="pt"
|
71 |
).to(device)
|
72 |
|
73 |
+
doge_outputs = doge_model.generate(
|
74 |
+
input_ids=doge_inputs,
|
75 |
+
generation_config=generation_config,
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
+
context = doge_tokenizer.decode(doge_outputs[0], skip_special_tokens=True)
|
78 |
+
|
79 |
+
# Generate speech from context
|
80 |
+
speech = synthesiser(context, forward_params={"speaker_embeddings": speaker_embedding})
|
81 |
audio = np.array(speech["audio"])
|
82 |
rate = speech["sampling_rate"]
|
83 |
|
|
|
86 |
except Exception as e:
|
87 |
return None, f"Error: {str(e)}", "", ""
|
88 |
|
89 |
+
|
90 |
# Gradio UI
|
91 |
iface = gr.Interface(
|
92 |
fn=process_image,
|
|
|
97 |
gr.Textbox(label="Extracted Text (OCR)"),
|
98 |
gr.Textbox(label="Generated Context")
|
99 |
],
|
100 |
+
title="SeeSay Contextualizer with Doge and Florence-2",
|
101 |
+
description="Upload an image to generate a caption, extract text, determine the context using Doge, and convert context to speech."
|
102 |
)
|
103 |
|
104 |
iface.launch(share=True)
|