Spaces:
Running
Running
Create watermarking.py
Browse files- watermarking.py +79 -0
watermarking.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import silentcipher
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
|
7 |
+
# This watermark key is public, it is not secure.
|
8 |
+
# If using CSM 1B in another application, use a new private key and keep it secret.
|
9 |
+
CSM_1B_GH_WATERMARK = [212, 211, 146, 56, 201]
|
10 |
+
|
11 |
+
|
12 |
+
def cli_check_audio() -> None:
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument("--audio_path", type=str, required=True)
|
15 |
+
args = parser.parse_args()
|
16 |
+
|
17 |
+
check_audio_from_file(args.audio_path)
|
18 |
+
|
19 |
+
|
20 |
+
def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
|
21 |
+
model = silentcipher.get_model(
|
22 |
+
model_type="44.1k",
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
+
return model
|
26 |
+
|
27 |
+
|
28 |
+
@torch.inference_mode()
|
29 |
+
def watermark(
|
30 |
+
watermarker: silentcipher.server.Model,
|
31 |
+
audio_array: torch.Tensor,
|
32 |
+
sample_rate: int,
|
33 |
+
watermark_key: list[int],
|
34 |
+
) -> tuple[torch.Tensor, int]:
|
35 |
+
audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
|
36 |
+
encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
|
37 |
+
|
38 |
+
output_sample_rate = min(44100, sample_rate)
|
39 |
+
encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
|
40 |
+
return encoded, output_sample_rate
|
41 |
+
|
42 |
+
|
43 |
+
@torch.inference_mode()
|
44 |
+
def verify(
|
45 |
+
watermarker: silentcipher.server.Model,
|
46 |
+
watermarked_audio: torch.Tensor,
|
47 |
+
sample_rate: int,
|
48 |
+
watermark_key: list[int],
|
49 |
+
) -> bool:
|
50 |
+
watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
|
51 |
+
result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
|
52 |
+
|
53 |
+
is_watermarked = result["status"]
|
54 |
+
if is_watermarked:
|
55 |
+
is_csm_watermarked = result["messages"][0] == watermark_key
|
56 |
+
else:
|
57 |
+
is_csm_watermarked = False
|
58 |
+
|
59 |
+
return is_watermarked and is_csm_watermarked
|
60 |
+
|
61 |
+
|
62 |
+
def check_audio_from_file(audio_path: str) -> None:
|
63 |
+
watermarker = load_watermarker(device="cuda")
|
64 |
+
|
65 |
+
audio_array, sample_rate = load_audio(audio_path)
|
66 |
+
is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_GH_WATERMARK)
|
67 |
+
|
68 |
+
outcome = "Watermarked" if is_watermarked else "Not watermarked"
|
69 |
+
print(f"{outcome}: {audio_path}")
|
70 |
+
|
71 |
+
|
72 |
+
def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
|
73 |
+
audio_array, sample_rate = torchaudio.load(audio_path)
|
74 |
+
audio_array = audio_array.mean(dim=0)
|
75 |
+
return audio_array, int(sample_rate)
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
cli_check_audio()
|