preston-cell commited on
Commit
4f03078
·
verified ·
1 Parent(s): faff8cd

Create watermarking.py

Browse files
Files changed (1) hide show
  1. watermarking.py +79 -0
watermarking.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import silentcipher
4
+ import torch
5
+ import torchaudio
6
+
7
+ # This watermark key is public, it is not secure.
8
+ # If using CSM 1B in another application, use a new private key and keep it secret.
9
+ CSM_1B_GH_WATERMARK = [212, 211, 146, 56, 201]
10
+
11
+
12
+ def cli_check_audio() -> None:
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument("--audio_path", type=str, required=True)
15
+ args = parser.parse_args()
16
+
17
+ check_audio_from_file(args.audio_path)
18
+
19
+
20
+ def load_watermarker(device: str = "cuda") -> silentcipher.server.Model:
21
+ model = silentcipher.get_model(
22
+ model_type="44.1k",
23
+ device=device,
24
+ )
25
+ return model
26
+
27
+
28
+ @torch.inference_mode()
29
+ def watermark(
30
+ watermarker: silentcipher.server.Model,
31
+ audio_array: torch.Tensor,
32
+ sample_rate: int,
33
+ watermark_key: list[int],
34
+ ) -> tuple[torch.Tensor, int]:
35
+ audio_array_44khz = torchaudio.functional.resample(audio_array, orig_freq=sample_rate, new_freq=44100)
36
+ encoded, _ = watermarker.encode_wav(audio_array_44khz, 44100, watermark_key, calc_sdr=False, message_sdr=36)
37
+
38
+ output_sample_rate = min(44100, sample_rate)
39
+ encoded = torchaudio.functional.resample(encoded, orig_freq=44100, new_freq=output_sample_rate)
40
+ return encoded, output_sample_rate
41
+
42
+
43
+ @torch.inference_mode()
44
+ def verify(
45
+ watermarker: silentcipher.server.Model,
46
+ watermarked_audio: torch.Tensor,
47
+ sample_rate: int,
48
+ watermark_key: list[int],
49
+ ) -> bool:
50
+ watermarked_audio_44khz = torchaudio.functional.resample(watermarked_audio, orig_freq=sample_rate, new_freq=44100)
51
+ result = watermarker.decode_wav(watermarked_audio_44khz, 44100, phase_shift_decoding=True)
52
+
53
+ is_watermarked = result["status"]
54
+ if is_watermarked:
55
+ is_csm_watermarked = result["messages"][0] == watermark_key
56
+ else:
57
+ is_csm_watermarked = False
58
+
59
+ return is_watermarked and is_csm_watermarked
60
+
61
+
62
+ def check_audio_from_file(audio_path: str) -> None:
63
+ watermarker = load_watermarker(device="cuda")
64
+
65
+ audio_array, sample_rate = load_audio(audio_path)
66
+ is_watermarked = verify(watermarker, audio_array, sample_rate, CSM_1B_GH_WATERMARK)
67
+
68
+ outcome = "Watermarked" if is_watermarked else "Not watermarked"
69
+ print(f"{outcome}: {audio_path}")
70
+
71
+
72
+ def load_audio(audio_path: str) -> tuple[torch.Tensor, int]:
73
+ audio_array, sample_rate = torchaudio.load(audio_path)
74
+ audio_array = audio_array.mean(dim=0)
75
+ return audio_array, int(sample_rate)
76
+
77
+
78
+ if __name__ == "__main__":
79
+ cli_check_audio()