Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,46 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import numpy as np
|
|
|
|
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
6 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
caption = captioner(input_image)[0]['generated_text']
|
14 |
|
15 |
-
|
16 |
-
speech = synthesiser(caption, forward_params={"do_sample": True})
|
17 |
-
audio = np.array(speech["audio"])
|
18 |
-
rate = speech["sampling_rate"]
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
# Gradio UI
|
23 |
iface = gr.Interface(
|
24 |
-
fn=
|
25 |
-
inputs=gr.Image(type=
|
26 |
outputs=[
|
27 |
-
gr.Audio(type="numpy", label="
|
28 |
gr.Textbox(label="Generated Caption")
|
29 |
],
|
30 |
-
title="🎙️ SeeSay",
|
31 |
-
description="Upload an image to hear it
|
32 |
)
|
33 |
|
34 |
-
iface.launch(share
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import numpy as np
|
4 |
+
from generator import load_csm_1b
|
5 |
+
import torchaudio
|
6 |
|
7 |
+
# Load CSM model
|
8 |
+
generator = load_csm_1b(device="cpu")
|
9 |
+
|
10 |
+
# Load image-to-text model
|
11 |
captioner = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
12 |
|
13 |
+
def process_image(input_image):
|
14 |
+
try:
|
15 |
+
# Generate caption
|
16 |
+
caption = captioner(input_image)[0]['generated_text']
|
17 |
+
|
18 |
+
# Generate speech using CSM
|
19 |
+
audio = generator.generate(
|
20 |
+
text=caption,
|
21 |
+
speaker=0,
|
22 |
+
context=[],
|
23 |
+
max_audio_length_ms=10_000,
|
24 |
+
)
|
25 |
|
26 |
+
# Convert the audio tensor to NumPy for Gradio
|
27 |
+
audio_np = audio.unsqueeze(0).cpu().numpy()
|
|
|
28 |
|
29 |
+
return (audio_np, generator.sample_rate), caption
|
|
|
|
|
|
|
30 |
|
31 |
+
except Exception as e:
|
32 |
+
return str(e), "Error generating caption or speech."
|
33 |
|
34 |
+
# Set up Gradio UI
|
35 |
iface = gr.Interface(
|
36 |
+
fn=process_image,
|
37 |
+
inputs=gr.Image(type='pil', label="Upload Image"),
|
38 |
outputs=[
|
39 |
+
gr.Audio(type="numpy", label="Generated Speech"),
|
40 |
gr.Textbox(label="Generated Caption")
|
41 |
],
|
42 |
+
title="🎙️ SeeSay with CSM",
|
43 |
+
description="Upload an image to generate a caption and hear it narrated using CSM."
|
44 |
)
|
45 |
|
46 |
+
iface.launch(share=True)
|