Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
3 |
-
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
set_seed(42)
|
9 |
-
|
10 |
-
# Load BLIP model for image captioning
|
11 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
12 |
|
13 |
-
#
|
14 |
-
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
15 |
-
|
16 |
-
# Load Florence-2 model for OCR
|
17 |
ocr_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
18 |
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
19 |
-
ocr_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
20 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Load speaker embedding
|
26 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
27 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
28 |
|
29 |
-
|
30 |
def process_image(image):
|
31 |
try:
|
32 |
-
# Generate caption from the image
|
33 |
caption = caption_model(image)[0]['generated_text']
|
34 |
|
35 |
-
# Extract text
|
36 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
37 |
generated_ids = ocr_model.generate(
|
38 |
input_ids=inputs["input_ids"],
|
@@ -43,28 +47,32 @@ def process_image(image):
|
|
43 |
)
|
44 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
54 |
forward_params={"speaker_embeddings": speaker_embedding}
|
55 |
)
|
56 |
|
57 |
-
# Prepare audio data
|
58 |
-
audio = np.array(
|
59 |
-
rate =
|
60 |
|
61 |
-
# Return audio, caption, extracted text, and context
|
62 |
-
return (rate, audio), caption, extracted_text,
|
63 |
|
64 |
except Exception as e:
|
65 |
return None, f"Error: {str(e)}", "", ""
|
66 |
|
67 |
-
|
68 |
# Gradio Interface
|
69 |
iface = gr.Interface(
|
70 |
fn=process_image,
|
@@ -73,10 +81,15 @@ iface = gr.Interface(
|
|
73 |
gr.Audio(label="Generated Audio"),
|
74 |
gr.Textbox(label="Generated Caption"),
|
75 |
gr.Textbox(label="Extracted Text (OCR)"),
|
76 |
-
gr.Textbox(label="
|
77 |
],
|
78 |
-
title="
|
79 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
|
82 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from datasets import load_dataset
|
6 |
+
from PIL import Image
|
7 |
|
8 |
+
# 1) IMAGE CAPTIONING MODEL
|
|
|
|
|
|
|
9 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
10 |
|
11 |
+
# 2) OCR MODEL (Florence-2)
|
|
|
|
|
|
|
12 |
ocr_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
+
ocr_model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
"microsoft/Florence-2-large",
|
16 |
+
torch_dtype=ocr_dtype,
|
17 |
+
trust_remote_code=True
|
18 |
+
).to(ocr_device)
|
19 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
20 |
|
21 |
+
# 3) QUESTION-ANSWERING MODEL
|
22 |
+
qa_model = pipeline(
|
23 |
+
"question-answering",
|
24 |
+
model="timpal0l/mdeberta-v3-base-squad2"
|
25 |
+
)
|
26 |
+
|
27 |
+
# 4) TEXT-TO-SPEECH MODEL
|
28 |
+
tts_pipeline = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
29 |
|
30 |
# Load speaker embedding
|
31 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
32 |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
33 |
|
|
|
34 |
def process_image(image):
|
35 |
try:
|
36 |
+
# 1) Generate caption from the image
|
37 |
caption = caption_model(image)[0]['generated_text']
|
38 |
|
39 |
+
# 2) Extract text from the image using Florence-2
|
40 |
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
41 |
generated_ids = ocr_model.generate(
|
42 |
input_ids=inputs["input_ids"],
|
|
|
47 |
)
|
48 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
49 |
|
50 |
+
# 3) Use QA model to derive context from caption + extracted text
|
51 |
+
# We treat the "context" string as the knowledge base and ask a question about it
|
52 |
+
question = "What is the context of this image?"
|
53 |
+
combined_context = f"Caption: {caption}\nExtracted Text: {extracted_text}"
|
54 |
+
qa_result = qa_model(question=question, context=combined_context)
|
55 |
|
56 |
+
# The QA model returns an extracted "answer" from the combined context
|
57 |
+
# If the model can't find a direct span, it may return an empty string or a short phrase
|
58 |
+
final_context = qa_result["answer"]
|
59 |
+
|
60 |
+
# 4) Convert the final context to speech
|
61 |
+
speech_data = tts_pipeline(
|
62 |
+
final_context,
|
63 |
forward_params={"speaker_embeddings": speaker_embedding}
|
64 |
)
|
65 |
|
66 |
+
# Prepare audio data for Gradio
|
67 |
+
audio = np.array(speech_data["audio"])
|
68 |
+
rate = speech_data["sampling_rate"]
|
69 |
|
70 |
+
# Return audio, caption, extracted text, and final context
|
71 |
+
return (rate, audio), caption, extracted_text, final_context
|
72 |
|
73 |
except Exception as e:
|
74 |
return None, f"Error: {str(e)}", "", ""
|
75 |
|
|
|
76 |
# Gradio Interface
|
77 |
iface = gr.Interface(
|
78 |
fn=process_image,
|
|
|
81 |
gr.Audio(label="Generated Audio"),
|
82 |
gr.Textbox(label="Generated Caption"),
|
83 |
gr.Textbox(label="Extracted Text (OCR)"),
|
84 |
+
gr.Textbox(label="QA-derived Context")
|
85 |
],
|
86 |
+
title="Contextual Image QA with SpeechT5",
|
87 |
+
description=(
|
88 |
+
"1) Generate a caption via BLIP. "
|
89 |
+
"2) Extract text using Florence-2. "
|
90 |
+
"3) Use QA with mDeBERTa to find a 'context' from caption + text. "
|
91 |
+
"4) Convert it to audio via SpeechT5."
|
92 |
+
),
|
93 |
)
|
94 |
|
95 |
iface.launch()
|