Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,29 @@ from transformers import pipeline
|
|
4 |
|
5 |
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
6 |
|
|
|
|
|
|
|
7 |
def launch(input):
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
iface = gr.Interface(launch,
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
iface.launch()
|
|
|
4 |
|
5 |
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
6 |
|
7 |
+
narrator = pipeline("text-to-speech",
|
8 |
+
model="./models/kakao-enterprise/vits-ljs")
|
9 |
+
|
10 |
def launch(input):
|
11 |
+
# Step 1: Extract text from image
|
12 |
+
caption = pipe(input_image)[0]['generated_text']
|
13 |
+
|
14 |
+
# Step 2: Generate speech from the caption
|
15 |
+
audio_output = narrator(caption)
|
16 |
+
|
17 |
+
# Step 3: Save the audio to a temporary file
|
18 |
+
audio_data = audio_output["audio"]
|
19 |
+
sampling_rate = audio_output["sampling_rate"]
|
20 |
+
|
21 |
+
# Gradio expects a tuple: (numpy_array, sampling_rate)
|
22 |
+
return (np.array(audio_data), sampling_rate)
|
23 |
|
24 |
iface = gr.Interface(launch,
|
25 |
+
fn=launch,
|
26 |
+
inputs=gr.Image(type='pil'),
|
27 |
+
outputs=gr.Audio(type="numpy", label="Narrated Output"),
|
28 |
+
title="SeeSay",
|
29 |
+
description="Upload an image to hear its context narrated aloud."
|
30 |
+
)
|
31 |
|
32 |
iface.launch()
|