Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,39 +1,34 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import (
|
| 3 |
pipeline,
|
| 4 |
-
AutoProcessor,
|
| 5 |
-
AutoModelForCausalLM,
|
| 6 |
AutoTokenizer,
|
|
|
|
| 7 |
GenerationConfig,
|
| 8 |
set_seed
|
| 9 |
)
|
| 10 |
-
from datasets import load_dataset
|
| 11 |
import torch
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
set_seed(42)
|
| 15 |
|
| 16 |
-
# Device
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
-
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 19 |
|
| 20 |
-
#
|
| 21 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 22 |
|
| 23 |
-
#
|
| 24 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
ocr_model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
-
"microsoft/Florence-2-large", torch_dtype=dtype, trust_remote_code=True
|
| 29 |
-
).to(device)
|
| 30 |
-
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
| 31 |
-
|
| 32 |
-
# Load Doge-320M-Instruct for context generation
|
| 33 |
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
| 34 |
doge_model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
"SmallDoge/Doge-320M-Instruct", trust_remote_code=True
|
| 36 |
).to(device)
|
|
|
|
| 37 |
doge_generation_config = GenerationConfig(
|
| 38 |
max_new_tokens=100,
|
| 39 |
use_cache=True,
|
|
@@ -43,44 +38,22 @@ doge_generation_config = GenerationConfig(
|
|
| 43 |
repetition_penalty=1.0
|
| 44 |
)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
embedding_data = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 49 |
-
|
| 50 |
-
for entry in embedding_data:
|
| 51 |
-
vec = entry["xvector"]
|
| 52 |
-
if len(vec) >= 600:
|
| 53 |
-
speaker_embedding = torch.tensor(vec[:600], dtype=torch.float32).unsqueeze(0)
|
| 54 |
-
break
|
| 55 |
-
|
| 56 |
-
# Fallback: use a zero vector if none found
|
| 57 |
-
if speaker_embedding is None:
|
| 58 |
-
print("⚠️ No suitable speaker embedding found. Using default 600-dim zero vector.")
|
| 59 |
-
speaker_embedding = torch.zeros(1, 600, dtype=torch.float32)
|
| 60 |
-
|
| 61 |
-
# Ensure correct shape
|
| 62 |
-
assert speaker_embedding.shape == (1, 600), f"Expected shape (1, 600), got {speaker_embedding.shape}"
|
| 63 |
-
|
| 64 |
|
| 65 |
def process_image(image):
|
| 66 |
try:
|
| 67 |
-
# 1. Caption
|
| 68 |
caption = caption_model(image)[0]['generated_text']
|
| 69 |
|
| 70 |
-
# 2. OCR
|
| 71 |
-
|
| 72 |
-
generated_ids = ocr_model.generate(
|
| 73 |
-
input_ids=inputs["input_ids"],
|
| 74 |
-
pixel_values=inputs["pixel_values"],
|
| 75 |
-
max_new_tokens=4096,
|
| 76 |
-
num_beams=3,
|
| 77 |
-
do_sample=False
|
| 78 |
-
)
|
| 79 |
-
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 80 |
|
| 81 |
-
# 3.
|
| 82 |
-
prompt =
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
conversation = [{"role": "user", "content": prompt}]
|
| 85 |
doge_inputs = doge_tokenizer.apply_chat_template(
|
| 86 |
conversation=conversation,
|
|
@@ -94,12 +67,8 @@ def process_image(image):
|
|
| 94 |
)
|
| 95 |
context = doge_tokenizer.decode(doge_output[0], skip_special_tokens=True).strip()
|
| 96 |
|
| 97 |
-
# 4.
|
| 98 |
-
speech = synthesiser(
|
| 99 |
-
context,
|
| 100 |
-
forward_params={"speaker_embeddings": speaker_embedding}
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
audio = np.array(speech["audio"])
|
| 104 |
rate = speech["sampling_rate"]
|
| 105 |
|
|
@@ -108,8 +77,6 @@ def process_image(image):
|
|
| 108 |
except Exception as e:
|
| 109 |
return None, f"Error: {str(e)}", "", ""
|
| 110 |
|
| 111 |
-
|
| 112 |
-
# Gradio Interface
|
| 113 |
iface = gr.Interface(
|
| 114 |
fn=process_image,
|
| 115 |
inputs=gr.Image(type='pil', label="Upload an Image"),
|
|
@@ -119,8 +86,8 @@ iface = gr.Interface(
|
|
| 119 |
gr.Textbox(label="Extracted Text (OCR)"),
|
| 120 |
gr.Textbox(label="Generated Context")
|
| 121 |
],
|
| 122 |
-
title="SeeSay Contextualizer
|
| 123 |
-
description="Upload an image to caption
|
| 124 |
)
|
| 125 |
|
| 126 |
iface.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import (
|
| 3 |
pipeline,
|
|
|
|
|
|
|
| 4 |
AutoTokenizer,
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
GenerationConfig,
|
| 7 |
set_seed
|
| 8 |
)
|
|
|
|
| 9 |
import torch
|
| 10 |
import numpy as np
|
| 11 |
+
import pytesseract
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from datasets import load_dataset
|
| 14 |
|
| 15 |
set_seed(42)
|
| 16 |
|
| 17 |
+
# Device
|
| 18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 19 |
|
| 20 |
+
# Image Captioning (BLIP)
|
| 21 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 22 |
|
| 23 |
+
# Text-to-Speech without speaker embeddings
|
| 24 |
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
| 25 |
|
| 26 |
+
# Doge-320M-Instruct for Context Generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
doge_tokenizer = AutoTokenizer.from_pretrained("SmallDoge/Doge-320M-Instruct")
|
| 28 |
doge_model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
"SmallDoge/Doge-320M-Instruct", trust_remote_code=True
|
| 30 |
).to(device)
|
| 31 |
+
|
| 32 |
doge_generation_config = GenerationConfig(
|
| 33 |
max_new_tokens=100,
|
| 34 |
use_cache=True,
|
|
|
|
| 38 |
repetition_penalty=1.0
|
| 39 |
)
|
| 40 |
|
| 41 |
+
def extract_text_with_tesseract(image):
|
| 42 |
+
return pytesseract.image_to_string(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
def process_image(image):
|
| 45 |
try:
|
| 46 |
+
# 1. Caption
|
| 47 |
caption = caption_model(image)[0]['generated_text']
|
| 48 |
|
| 49 |
+
# 2. OCR
|
| 50 |
+
extracted_text = extract_text_with_tesseract(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# 3. Context with Doge (truncate input)
|
| 53 |
+
prompt = (
|
| 54 |
+
f"Determine the context of this image.\n"
|
| 55 |
+
f"Caption: {caption[:200]}\nExtracted text: {extracted_text[:200]}\nContext:"
|
| 56 |
+
)
|
| 57 |
conversation = [{"role": "user", "content": prompt}]
|
| 58 |
doge_inputs = doge_tokenizer.apply_chat_template(
|
| 59 |
conversation=conversation,
|
|
|
|
| 67 |
)
|
| 68 |
context = doge_tokenizer.decode(doge_output[0], skip_special_tokens=True).strip()
|
| 69 |
|
| 70 |
+
# 4. Text-to-Speech (no embeddings)
|
| 71 |
+
speech = synthesiser(context)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
audio = np.array(speech["audio"])
|
| 73 |
rate = speech["sampling_rate"]
|
| 74 |
|
|
|
|
| 77 |
except Exception as e:
|
| 78 |
return None, f"Error: {str(e)}", "", ""
|
| 79 |
|
|
|
|
|
|
|
| 80 |
iface = gr.Interface(
|
| 81 |
fn=process_image,
|
| 82 |
inputs=gr.Image(type='pil', label="Upload an Image"),
|
|
|
|
| 86 |
gr.Textbox(label="Extracted Text (OCR)"),
|
| 87 |
gr.Textbox(label="Generated Context")
|
| 88 |
],
|
| 89 |
+
title="SeeSay Contextualizer (Optimized)",
|
| 90 |
+
description="Upload an image to generate a caption, extract text (OCR), generate context, and hear it spoken."
|
| 91 |
)
|
| 92 |
|
| 93 |
iface.launch(share=True)
|