Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,80 +1,60 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
from PIL import Image
|
| 5 |
from transformers import (
|
| 6 |
-
pipeline,
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
AutoTokenizer,
|
| 10 |
-
|
| 11 |
-
TextStreamer,
|
| 12 |
)
|
| 13 |
from datasets import load_dataset
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 18 |
-
print(f"Device set to use {device}")
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base"
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
"microsoft/Florence-2-base", trust_remote_code=True, torch_dtype=dtype
|
| 26 |
-
).to(device)
|
| 27 |
-
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
doge_model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
-
"SmallDoge/Doge-320M-Instruct", trust_remote_code=True
|
| 33 |
-
).to(device)
|
| 34 |
-
doge_config = GenerationConfig(
|
| 35 |
-
max_new_tokens=100,
|
| 36 |
-
use_cache=True,
|
| 37 |
-
do_sample=True,
|
| 38 |
-
temperature=0.8,
|
| 39 |
-
top_p=0.9,
|
| 40 |
-
repetition_penalty=1.0
|
| 41 |
-
)
|
| 42 |
|
| 43 |
-
# Load
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
#
|
| 47 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 48 |
-
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 49 |
|
| 50 |
def process_image(image):
|
| 51 |
try:
|
| 52 |
-
#
|
| 53 |
caption = caption_model(image)[0]['generated_text']
|
| 54 |
|
| 55 |
-
# OCR
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
input_ids=
|
| 59 |
-
pixel_values=
|
| 60 |
max_new_tokens=1024,
|
| 61 |
num_beams=3,
|
| 62 |
-
do_sample=False
|
| 63 |
)
|
| 64 |
-
extracted_text = ocr_processor.batch_decode(
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
prompt = f"Determine the context of this image based on the caption and extracted text
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
doge_output = doge_model.generate(doge_inputs, generation_config=doge_config)
|
| 71 |
-
context = doge_tokenizer.decode(doge_output[0], skip_special_tokens=True)
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
speech = synthesiser(
|
| 75 |
-
context,
|
| 76 |
-
forward_params={"speaker_embeddings": speaker_embedding}
|
| 77 |
-
)
|
| 78 |
audio = np.array(speech["audio"])
|
| 79 |
rate = speech["sampling_rate"]
|
| 80 |
|
|
@@ -93,8 +73,8 @@ iface = gr.Interface(
|
|
| 93 |
gr.Textbox(label="Extracted Text (OCR)"),
|
| 94 |
gr.Textbox(label="Generated Context")
|
| 95 |
],
|
| 96 |
-
title="SeeSay Contextualizer
|
| 97 |
-
description="Upload an image to generate a caption, extract
|
| 98 |
)
|
| 99 |
|
| 100 |
-
iface.launch(
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import (
|
| 3 |
+
pipeline,
|
| 4 |
+
AutoProcessor,
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
AutoTokenizer,
|
| 7 |
+
set_seed
|
|
|
|
| 8 |
)
|
| 9 |
from datasets import load_dataset
|
| 10 |
+
import torch
|
| 11 |
+
import numpy as np
|
| 12 |
|
| 13 |
+
# Set seed
|
| 14 |
+
set_seed(42)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# Captioning model
|
| 17 |
+
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 18 |
|
| 19 |
+
# GPT-2 model for context generation
|
| 20 |
+
gpt2_generator = pipeline("text-generation", model="gpt2")
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# SpeechT5 for text-to-speech
|
| 23 |
+
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Load Florence-2-base for OCR
|
| 26 |
+
ocr_device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
+
ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 28 |
+
ocr_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=ocr_dtype, trust_remote_code=True).to(ocr_device)
|
| 29 |
+
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
| 30 |
|
| 31 |
+
# Load speaker embedding
|
| 32 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 33 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 34 |
|
| 35 |
def process_image(image):
|
| 36 |
try:
|
| 37 |
+
# Generate caption
|
| 38 |
caption = caption_model(image)[0]['generated_text']
|
| 39 |
|
| 40 |
+
# Extract OCR text
|
| 41 |
+
inputs = ocr_processor(text="<OCR>", images=image, return_tensors="pt").to(ocr_device, ocr_dtype)
|
| 42 |
+
generated_ids = ocr_model.generate(
|
| 43 |
+
input_ids=inputs["input_ids"],
|
| 44 |
+
pixel_values=inputs["pixel_values"],
|
| 45 |
max_new_tokens=1024,
|
| 46 |
num_beams=3,
|
| 47 |
+
do_sample=False
|
| 48 |
)
|
| 49 |
+
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 50 |
|
| 51 |
+
# Generate context with GPT-2
|
| 52 |
+
prompt = f"Determine the context of this image based on the caption and extracted text. Caption: {caption}. Extracted text: {extracted_text}. Context:"
|
| 53 |
+
context_output = gpt2_generator(prompt, max_length=100, num_return_sequences=1)
|
| 54 |
+
context = context_output[0]['generated_text']
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
# Text-to-speech
|
| 57 |
+
speech = synthesiser(context, forward_params={"speaker_embeddings": speaker_embedding})
|
|
|
|
|
|
|
|
|
|
| 58 |
audio = np.array(speech["audio"])
|
| 59 |
rate = speech["sampling_rate"]
|
| 60 |
|
|
|
|
| 73 |
gr.Textbox(label="Extracted Text (OCR)"),
|
| 74 |
gr.Textbox(label="Generated Context")
|
| 75 |
],
|
| 76 |
+
title="SeeSay Contextualizer",
|
| 77 |
+
description="Upload an image to generate a caption, extract text, create audio from context, and determine the context using GPT-2 and Florence-2-base."
|
| 78 |
)
|
| 79 |
|
| 80 |
+
iface.launch()
|