Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
|
3 |
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
|
|
|
|
|
|
|
7 |
# Load BLIP model for image captioning
|
8 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
9 |
|
@@ -16,10 +19,8 @@ ocr_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
16 |
ocr_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=ocr_dtype, trust_remote_code=True).to(ocr_device)
|
17 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
18 |
|
19 |
-
# Load
|
20 |
-
|
21 |
-
qwq_model = AutoModelForCausalLM.from_pretrained(qwq_model_name, torch_dtype="auto", device_map="auto")
|
22 |
-
qwq_tokenizer = AutoTokenizer.from_pretrained(qwq_model_name)
|
23 |
|
24 |
# Load speaker embedding
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -42,12 +43,10 @@ def process_image(image):
|
|
42 |
)
|
43 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
44 |
|
45 |
-
# Generate context using
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
qwq_output_ids = qwq_model.generate(**inputs_qwq, max_new_tokens=100)
|
50 |
-
context = qwq_tokenizer.batch_decode(qwq_output_ids[:, inputs_qwq.input_ids.shape[-1]:], skip_special_tokens=True)[0]
|
51 |
|
52 |
# Convert context to speech
|
53 |
speech = synthesiser(
|
@@ -76,9 +75,8 @@ iface = gr.Interface(
|
|
76 |
gr.Textbox(label="Extracted Text (OCR)"),
|
77 |
gr.Textbox(label="Generated Context")
|
78 |
],
|
79 |
-
title="SeeSay Contextualizer with
|
80 |
-
description="Upload an image to generate a caption, extract text, create audio from context, and determine the context using
|
81 |
)
|
82 |
|
83 |
iface.launch()
|
84 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM, AutoTokenizer, set_seed
|
3 |
from datasets import load_dataset
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
|
7 |
+
# Set seed for reproducibility
|
8 |
+
set_seed(42)
|
9 |
+
|
10 |
# Load BLIP model for image captioning
|
11 |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
12 |
|
|
|
19 |
ocr_model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=ocr_dtype, trust_remote_code=True).to(ocr_device)
|
20 |
ocr_processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
21 |
|
22 |
+
# Load GPT-2 XL model for text generation
|
23 |
+
gpt2_generator = pipeline('text-generation', model='gpt2-xl')
|
|
|
|
|
24 |
|
25 |
# Load speaker embedding
|
26 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
43 |
)
|
44 |
extracted_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
45 |
|
46 |
+
# Generate context using GPT-2 XL
|
47 |
+
prompt = f"Determine the context of this image based on the caption and extracted text. Caption: {caption}. Extracted text: {extracted_text}. Context:"
|
48 |
+
context_output = gpt2_generator(prompt, max_length=150, num_return_sequences=1)
|
49 |
+
context = context_output[0]['generated_text']
|
|
|
|
|
50 |
|
51 |
# Convert context to speech
|
52 |
speech = synthesiser(
|
|
|
75 |
gr.Textbox(label="Extracted Text (OCR)"),
|
76 |
gr.Textbox(label="Generated Context")
|
77 |
],
|
78 |
+
title="SeeSay Contextualizer with GPT-2 XL",
|
79 |
+
description="Upload an image to generate a caption, extract text, create audio from context, and determine the context using GPT-2 XL."
|
80 |
)
|
81 |
|
82 |
iface.launch()
|
|