Spaces:
Running
Running
File size: 10,043 Bytes
8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 8cb2175 7c676e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import sys
import importlib.util
from pathlib import Path
from huggingface_hub import hf_hub_download, snapshot_download, HfFileSystem
import gradio as gr
# Your private space details
PRIVATE_SPACE_REPO = "prgarg007/ai-style-transfer-dreamsofa" # Replace with your actual private space name
HF_TOKEN = os.getenv("HF_TOKEN")
def setup_cache_directory():
"""Setup and return cache directory for private space files"""
cache_dir = Path("private_space_cache")
cache_dir.mkdir(exist_ok=True)
return cache_dir
def download_private_assets(cache_dir):
"""Download necessary files from private space"""
try:
print("Downloading private space assets...")
# Download entire repository snapshot for directory structure
snapshot_download(
repo_id=PRIVATE_SPACE_REPO,
repo_type="space",
local_dir=cache_dir,
token=HF_TOKEN
)
print("Successfully downloaded private space assets!")
return True
except Exception as e:
print(f"Error downloading private assets: {str(e)}")
return False
def load_private_app():
"""Download and import the private space app"""
try:
print("Setting up cache directory...")
cache_dir = setup_cache_directory()
print("Downloading private space files...")
if not download_private_assets(cache_dir):
return None
print("Loading private app code...")
# Download the main app.py file from private space
app_path = hf_hub_download(
repo_id=PRIVATE_SPACE_REPO,
filename="app.py",
repo_type="space",
token=HF_TOKEN
)
print(f"App file downloaded to: {app_path}")
# Add the cache directory to Python path so imports work
sys.path.insert(0, str(cache_dir))
# Import and execute the private app
spec_app = importlib.util.spec_from_file_location("private_app", app_path)
private_app_module = importlib.util.module_from_spec(spec_app)
# Set environment variables that might be needed
# Copy any environment variables from current space to the imported module
env_vars_to_copy = ["OPENAI_API_KEY", "HF_TOKEN"]
for var in env_vars_to_copy:
if os.getenv(var):
os.environ[var] = os.getenv(var)
# Execute the module
spec_app.loader.exec_module(private_app_module)
print("Successfully loaded private app module!")
return private_app_module
except Exception as e:
print(f"Error loading private app: {str(e)}")
return None
def create_public_interface():
"""Create public interface that uses private app functionality"""
# Load the private app
private_app = load_private_app()
if private_app is None:
# Fallback interface if loading fails
with gr.Blocks(title="AI Style Transfer - Loading Error") as error_app:
gr.Markdown("""
# ⚠️ Service Temporarily Unavailable
We're experiencing technical difficulties loading the AI processing service.
**Possible causes:**
- Network connectivity issues
- Authentication problems
- Service maintenance
**Solutions:**
1. Check that HF_TOKEN environment variable is set correctly
2. Verify the private space name is correct
3. Ensure you have access to the private space
4. Try refreshing the page in a few minutes
If the problem persists, please contact support.
""")
return error_app
# If we successfully loaded the private app, create the interface using its functions
try:
# The private app should have a create_interface function
if hasattr(private_app, 'create_interface'):
print("Using create_interface from private app...")
return private_app.create_interface()
# Alternative: if it has the main components, build interface manually
elif hasattr(private_app, 'process_images'):
print("Building interface using private app functions...")
with gr.Blocks(title="AI Style Transfer & Room Integration", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🚀 AI Powered Style Transfer & Room Integration
## Secure Processing Portal
Transform your furniture with AI-powered style transfer and room integration!
**How it works:**
1. Upload a **swatch image** (fabric/pattern you want to apply)
2. Upload a **product image** (furniture piece to style)
3. Upload a **room image** (where you want to place the furniture)
4. Select your preferred **room style**
5. Let AI work its magic! ✨
*Your code and processing logic are securely protected*
""")
with gr.Row():
with gr.Column():
gr.Markdown("### 📤 Upload Your Images")
swatch_input = gr.Image(
label="🎨 Swatch/Pattern Image",
type="pil",
height=200
)
product_input = gr.Image(
label="📦 Furniture/Product Image",
type="pil",
height=200
)
room_input = gr.Image(
label="🏠 Room/Background Image",
type="pil",
height=200
)
room_style = gr.Dropdown(
choices=["modern", "vintage", "industrial", "scandinavian", "bohemian", "rustic"],
value="modern",
label="🎭 Room Style Theme"
)
process_btn = gr.Button("🤖 Transform with AI", variant="primary", size="lg")
with gr.Column():
gr.Markdown("### 🎯 AI Generated Results")
styled_product_output = gr.Image(
label="🎨 Step 1: Styled Product",
height=300
)
final_output = gr.Image(
label="🏆 Step 2: Room Integration",
height=300
)
status_output = gr.Textbox(
label="🔄 Processing Status",
value="Ready to transform your furniture with AI...",
interactive=False
)
# Connect to the private app's processing function
process_btn.click(
fn=private_app.process_images, # Use the function from private space
inputs=[swatch_input, product_input, room_input, room_style],
outputs=[styled_product_output, final_output, status_output],
show_progress=True
)
gr.Markdown("""
### 🎨 Example Use Cases:
- **Interior Design**: Preview how different fabrics look on your furniture
- **E-commerce**: Show products in various styles and room settings
- **Home Renovation**: Experiment with different design aesthetics
- **Furniture Customization**: Visualize custom upholstery options
### ⚡ Powered by:
- OpenAI DALL-E for image generation
- Advanced AI for style analysis and transfer
- Secure code execution from private repository
### 🔒 Privacy & Security:
- Your processing code is kept private and secure
- Images are processed securely without permanent storage
- Code execution happens in isolated environment
""")
return app
else:
raise Exception("Private app doesn't have expected functions")
except Exception as e:
print(f"Error creating interface with private app: {str(e)}")
# Final fallback
with gr.Blocks(title="AI Style Transfer - Configuration Error") as fallback_app:
gr.Markdown(f"""
# ⚠️ Configuration Error
Successfully connected to private space but encountered a configuration error:
`{str(e)}`
Please check:
1. Private space code structure
2. Required functions are properly defined
3. Environment variables are set correctly
Contact support if this issue persists.
""")
return fallback_app
"""Main function to create and launch the public interface"""
print("Starting public interface...")
print(f"Private space: {PRIVATE_SPACE_REPO}")
print(f"HF Token available: {'Yes' if HF_TOKEN else 'No'}")
# Create the public interface
app = create_public_interface()
# Launch the app
print("Launching public interface...")
app.launch() |