Spaces:
Runtime error
Runtime error
Create models.py
Browse files
models.py
ADDED
|
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from glob import glob
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import tensorflow as tf
|
| 9 |
+
from tensorflow.keras import layers, models, optimizers
|
| 10 |
+
|
| 11 |
+
from custom_layers import yolov4_neck, yolov4_head, nms
|
| 12 |
+
from utils import load_weights, get_detection_data, draw_bbox, voc_ap, draw_plot_func, read_txt_to_list
|
| 13 |
+
from config import yolo_config
|
| 14 |
+
from loss import yolo_loss
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Yolov4(object):
|
| 18 |
+
def __init__(self,
|
| 19 |
+
weight_path=None,
|
| 20 |
+
class_name_path='coco_classes.txt',
|
| 21 |
+
config=yolo_config,
|
| 22 |
+
):
|
| 23 |
+
assert config['img_size'][0] == config['img_size'][1], 'not support yet'
|
| 24 |
+
assert config['img_size'][0] % config['strides'][-1] == 0, 'must be a multiple of last stride'
|
| 25 |
+
self.class_names = [line.strip() for line in open(class_name_path).readlines()]
|
| 26 |
+
self.img_size = yolo_config['img_size']
|
| 27 |
+
self.num_classes = len(self.class_names)
|
| 28 |
+
self.weight_path = weight_path
|
| 29 |
+
self.anchors = np.array(yolo_config['anchors']).reshape((3, 3, 2))
|
| 30 |
+
self.xyscale = yolo_config['xyscale']
|
| 31 |
+
self.strides = yolo_config['strides']
|
| 32 |
+
self.output_sizes = [self.img_size[0] // s for s in self.strides]
|
| 33 |
+
self.class_color = {name: list(np.random.random(size=3)*255) for name in self.class_names}
|
| 34 |
+
# Training
|
| 35 |
+
self.max_boxes = yolo_config['max_boxes']
|
| 36 |
+
self.iou_loss_thresh = yolo_config['iou_loss_thresh']
|
| 37 |
+
self.config = yolo_config
|
| 38 |
+
assert self.num_classes > 0, 'no classes detected!'
|
| 39 |
+
|
| 40 |
+
tf.keras.backend.clear_session()
|
| 41 |
+
if yolo_config['num_gpu'] > 1:
|
| 42 |
+
mirrored_strategy = tf.distribute.MirroredStrategy()
|
| 43 |
+
with mirrored_strategy.scope():
|
| 44 |
+
self.build_model(load_pretrained=True if self.weight_path else False)
|
| 45 |
+
else:
|
| 46 |
+
self.build_model(load_pretrained=True if self.weight_path else False)
|
| 47 |
+
|
| 48 |
+
def build_model(self, load_pretrained=True):
|
| 49 |
+
# core yolo model
|
| 50 |
+
input_layer = layers.Input(self.img_size)
|
| 51 |
+
yolov4_output = yolov4_neck(input_layer, self.num_classes)
|
| 52 |
+
self.yolo_model = models.Model(input_layer, yolov4_output)
|
| 53 |
+
|
| 54 |
+
# Build training model
|
| 55 |
+
y_true = [
|
| 56 |
+
layers.Input(name='input_2', shape=(52, 52, 3, (self.num_classes + 5))), # label small boxes
|
| 57 |
+
layers.Input(name='input_3', shape=(26, 26, 3, (self.num_classes + 5))), # label medium boxes
|
| 58 |
+
layers.Input(name='input_4', shape=(13, 13, 3, (self.num_classes + 5))), # label large boxes
|
| 59 |
+
layers.Input(name='input_5', shape=(self.max_boxes, 4)), # true bboxes
|
| 60 |
+
]
|
| 61 |
+
loss_list = tf.keras.layers.Lambda(yolo_loss, name='yolo_loss',
|
| 62 |
+
arguments={'num_classes': self.num_classes,
|
| 63 |
+
'iou_loss_thresh': self.iou_loss_thresh,
|
| 64 |
+
'anchors': self.anchors})([*self.yolo_model.output, *y_true])
|
| 65 |
+
self.training_model = models.Model([self.yolo_model.input, *y_true], loss_list)
|
| 66 |
+
|
| 67 |
+
# Build inference model
|
| 68 |
+
yolov4_output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
|
| 69 |
+
# output: [boxes, scores, classes, valid_detections]
|
| 70 |
+
self.inference_model = models.Model(input_layer,
|
| 71 |
+
nms(yolov4_output, self.img_size, self.num_classes,
|
| 72 |
+
iou_threshold=self.config['iou_threshold'],
|
| 73 |
+
score_threshold=self.config['score_threshold']))
|
| 74 |
+
|
| 75 |
+
if load_pretrained and self.weight_path and self.weight_path.endswith('.weights'):
|
| 76 |
+
if self.weight_path.endswith('.weights'):
|
| 77 |
+
load_weights(self.yolo_model, self.weight_path)
|
| 78 |
+
print(f'load from {self.weight_path}')
|
| 79 |
+
elif self.weight_path.endswith('.h5'):
|
| 80 |
+
self.training_model.load_weights(self.weight_path)
|
| 81 |
+
print(f'load from {self.weight_path}')
|
| 82 |
+
|
| 83 |
+
self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3),
|
| 84 |
+
loss={'yolo_loss': lambda y_true, y_pred: y_pred})
|
| 85 |
+
|
| 86 |
+
def load_model(self, path):
|
| 87 |
+
self.yolo_model = models.load_model(path, compile=False)
|
| 88 |
+
yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes, self.anchors, self.xyscale)
|
| 89 |
+
self.inference_model = models.Model(self.yolo_model.input,
|
| 90 |
+
nms(yolov4_output, self.img_size, self.num_classes)) # [boxes, scores, classes, valid_detections]
|
| 91 |
+
|
| 92 |
+
def save_model(self, path):
|
| 93 |
+
self.yolo_model.save(path)
|
| 94 |
+
|
| 95 |
+
def preprocess_img(self, img):
|
| 96 |
+
img = cv2.resize(img, self.img_size[:2])
|
| 97 |
+
img = img / 255.
|
| 98 |
+
return img
|
| 99 |
+
|
| 100 |
+
def fit(self, train_data_gen, epochs, val_data_gen=None, initial_epoch=0, callbacks=None):
|
| 101 |
+
self.training_model.fit(train_data_gen,
|
| 102 |
+
steps_per_epoch=len(train_data_gen),
|
| 103 |
+
validation_data=val_data_gen,
|
| 104 |
+
validation_steps=len(val_data_gen),
|
| 105 |
+
epochs=epochs,
|
| 106 |
+
callbacks=callbacks,
|
| 107 |
+
initial_epoch=initial_epoch)
|
| 108 |
+
# raw_img: RGB
|
| 109 |
+
def predict_img(self, raw_img, random_color=True, plot_img=True, figsize=(10, 10), show_text=True, return_output=True):
|
| 110 |
+
print('img shape: ', raw_img.shape)
|
| 111 |
+
img = self.preprocess_img(raw_img)
|
| 112 |
+
imgs = np.expand_dims(img, axis=0)
|
| 113 |
+
pred_output = self.inference_model.predict(imgs)
|
| 114 |
+
detections = get_detection_data(img=raw_img,
|
| 115 |
+
model_outputs=pred_output,
|
| 116 |
+
class_names=self.class_names)
|
| 117 |
+
|
| 118 |
+
output_img = draw_bbox(raw_img, detections, cmap=self.class_color, random_color=random_color, figsize=figsize,
|
| 119 |
+
show_text=show_text, show_img=False)
|
| 120 |
+
if return_output:
|
| 121 |
+
return output_img, detections
|
| 122 |
+
else:
|
| 123 |
+
return detections
|
| 124 |
+
|
| 125 |
+
def predict(self, img_path, random_color=True, plot_img=True, figsize=(10, 10), show_text=True):
|
| 126 |
+
raw_img = img_path
|
| 127 |
+
return self.predict_img(raw_img, random_color, plot_img, figsize, show_text)
|
| 128 |
+
|
| 129 |
+
def export_gt(self, annotation_path, gt_folder_path):
|
| 130 |
+
with open(annotation_path) as file:
|
| 131 |
+
for line in file:
|
| 132 |
+
line = line.split(' ')
|
| 133 |
+
filename = line[0].split(os.sep)[-1].split('.')[0]
|
| 134 |
+
objs = line[1:]
|
| 135 |
+
# export txt file
|
| 136 |
+
with open(os.path.join(gt_folder_path, filename + '.txt'), 'w') as output_file:
|
| 137 |
+
for obj in objs:
|
| 138 |
+
x_min, y_min, x_max, y_max, class_id = [float(o) for o in obj.strip().split(',')]
|
| 139 |
+
output_file.write(f'{self.class_names[int(class_id)]} {x_min} {y_min} {x_max} {y_max}\n')
|
| 140 |
+
|
| 141 |
+
def export_prediction(self, annotation_path, pred_folder_path, img_folder_path, bs=2):
|
| 142 |
+
with open(annotation_path) as file:
|
| 143 |
+
img_paths = [os.path.join(img_folder_path, line.split(' ')[0].split(os.sep)[-1]) for line in file]
|
| 144 |
+
# print(img_paths[:20])
|
| 145 |
+
for batch_idx in tqdm(range(0, len(img_paths), bs)):
|
| 146 |
+
# print(len(img_paths), batch_idx, batch_idx*bs, (batch_idx+1)*bs)
|
| 147 |
+
paths = img_paths[batch_idx:batch_idx+bs]
|
| 148 |
+
# print(paths)
|
| 149 |
+
# read and process img
|
| 150 |
+
imgs = np.zeros((len(paths), *self.img_size))
|
| 151 |
+
raw_img_shapes = []
|
| 152 |
+
for j, path in enumerate(paths):
|
| 153 |
+
img = cv2.imread(path)
|
| 154 |
+
raw_img_shapes.append(img.shape)
|
| 155 |
+
img = self.preprocess_img(img)
|
| 156 |
+
imgs[j] = img
|
| 157 |
+
|
| 158 |
+
# process batch output
|
| 159 |
+
b_boxes, b_scores, b_classes, b_valid_detections = self.inference_model.predict(imgs)
|
| 160 |
+
for k in range(len(paths)):
|
| 161 |
+
num_boxes = b_valid_detections[k]
|
| 162 |
+
raw_img_shape = raw_img_shapes[k]
|
| 163 |
+
boxes = b_boxes[k, :num_boxes]
|
| 164 |
+
classes = b_classes[k, :num_boxes]
|
| 165 |
+
scores = b_scores[k, :num_boxes]
|
| 166 |
+
# print(raw_img_shape)
|
| 167 |
+
boxes[:, [0, 2]] = (boxes[:, [0, 2]] * raw_img_shape[1]) # w
|
| 168 |
+
boxes[:, [1, 3]] = (boxes[:, [1, 3]] * raw_img_shape[0]) # h
|
| 169 |
+
cls_names = [self.class_names[int(c)] for c in classes]
|
| 170 |
+
# print(raw_img_shape, boxes.astype(int), cls_names, scores)
|
| 171 |
+
|
| 172 |
+
img_path = paths[k]
|
| 173 |
+
filename = img_path.split(os.sep)[-1].split('.')[0]
|
| 174 |
+
# print(filename)
|
| 175 |
+
output_path = os.path.join(pred_folder_path, filename+'.txt')
|
| 176 |
+
with open(output_path, 'w') as pred_file:
|
| 177 |
+
for box_idx in range(num_boxes):
|
| 178 |
+
b = boxes[box_idx]
|
| 179 |
+
pred_file.write(f'{cls_names[box_idx]} {scores[box_idx]} {b[0]} {b[1]} {b[2]} {b[3]}\n')
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def eval_map(self, gt_folder_path, pred_folder_path, temp_json_folder_path, output_files_path):
|
| 183 |
+
"""Process Gt"""
|
| 184 |
+
ground_truth_files_list = glob(gt_folder_path + '/*.txt')
|
| 185 |
+
assert len(ground_truth_files_list) > 0, 'no ground truth file'
|
| 186 |
+
ground_truth_files_list.sort()
|
| 187 |
+
# dictionary with counter per class
|
| 188 |
+
gt_counter_per_class = {}
|
| 189 |
+
counter_images_per_class = {}
|
| 190 |
+
|
| 191 |
+
gt_files = []
|
| 192 |
+
for txt_file in ground_truth_files_list:
|
| 193 |
+
file_id = txt_file.split(".txt", 1)[0]
|
| 194 |
+
file_id = os.path.basename(os.path.normpath(file_id))
|
| 195 |
+
# check if there is a correspondent detection-results file
|
| 196 |
+
temp_path = os.path.join(pred_folder_path, (file_id + ".txt"))
|
| 197 |
+
assert os.path.exists(temp_path), "Error. File not found: {}\n".format(temp_path)
|
| 198 |
+
lines_list = read_txt_to_list(txt_file)
|
| 199 |
+
# create ground-truth dictionary
|
| 200 |
+
bounding_boxes = []
|
| 201 |
+
is_difficult = False
|
| 202 |
+
already_seen_classes = []
|
| 203 |
+
for line in lines_list:
|
| 204 |
+
class_name, left, top, right, bottom = line.split()
|
| 205 |
+
# check if class is in the ignore list, if yes skip
|
| 206 |
+
bbox = left + " " + top + " " + right + " " + bottom
|
| 207 |
+
bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False})
|
| 208 |
+
# count that object
|
| 209 |
+
if class_name in gt_counter_per_class:
|
| 210 |
+
gt_counter_per_class[class_name] += 1
|
| 211 |
+
else:
|
| 212 |
+
# if class didn't exist yet
|
| 213 |
+
gt_counter_per_class[class_name] = 1
|
| 214 |
+
|
| 215 |
+
if class_name not in already_seen_classes:
|
| 216 |
+
if class_name in counter_images_per_class:
|
| 217 |
+
counter_images_per_class[class_name] += 1
|
| 218 |
+
else:
|
| 219 |
+
# if class didn't exist yet
|
| 220 |
+
counter_images_per_class[class_name] = 1
|
| 221 |
+
already_seen_classes.append(class_name)
|
| 222 |
+
|
| 223 |
+
# dump bounding_boxes into a ".json" file
|
| 224 |
+
new_temp_file = os.path.join(temp_json_folder_path, file_id+"_ground_truth.json") #TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
|
| 225 |
+
gt_files.append(new_temp_file)
|
| 226 |
+
with open(new_temp_file, 'w') as outfile:
|
| 227 |
+
json.dump(bounding_boxes, outfile)
|
| 228 |
+
|
| 229 |
+
gt_classes = list(gt_counter_per_class.keys())
|
| 230 |
+
# let's sort the classes alphabetically
|
| 231 |
+
gt_classes = sorted(gt_classes)
|
| 232 |
+
n_classes = len(gt_classes)
|
| 233 |
+
print(gt_classes, gt_counter_per_class)
|
| 234 |
+
|
| 235 |
+
"""Process prediction"""
|
| 236 |
+
|
| 237 |
+
dr_files_list = sorted(glob(os.path.join(pred_folder_path, '*.txt')))
|
| 238 |
+
|
| 239 |
+
for class_index, class_name in enumerate(gt_classes):
|
| 240 |
+
bounding_boxes = []
|
| 241 |
+
for txt_file in dr_files_list:
|
| 242 |
+
# the first time it checks if all the corresponding ground-truth files exist
|
| 243 |
+
file_id = txt_file.split(".txt", 1)[0]
|
| 244 |
+
file_id = os.path.basename(os.path.normpath(file_id))
|
| 245 |
+
temp_path = os.path.join(gt_folder_path, (file_id + ".txt"))
|
| 246 |
+
if class_index == 0:
|
| 247 |
+
if not os.path.exists(temp_path):
|
| 248 |
+
error_msg = f"Error. File not found: {temp_path}\n"
|
| 249 |
+
print(error_msg)
|
| 250 |
+
lines = read_txt_to_list(txt_file)
|
| 251 |
+
for line in lines:
|
| 252 |
+
try:
|
| 253 |
+
tmp_class_name, confidence, left, top, right, bottom = line.split()
|
| 254 |
+
except ValueError:
|
| 255 |
+
error_msg = f"""Error: File {txt_file} in the wrong format.\n
|
| 256 |
+
Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n
|
| 257 |
+
Received: {line} \n"""
|
| 258 |
+
print(error_msg)
|
| 259 |
+
if tmp_class_name == class_name:
|
| 260 |
+
# print("match")
|
| 261 |
+
bbox = left + " " + top + " " + right + " " + bottom
|
| 262 |
+
bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox})
|
| 263 |
+
# sort detection-results by decreasing confidence
|
| 264 |
+
bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True)
|
| 265 |
+
with open(temp_json_folder_path + "/" + class_name + "_dr.json", 'w') as outfile:
|
| 266 |
+
json.dump(bounding_boxes, outfile)
|
| 267 |
+
|
| 268 |
+
"""
|
| 269 |
+
Calculate the AP for each class
|
| 270 |
+
"""
|
| 271 |
+
sum_AP = 0.0
|
| 272 |
+
ap_dictionary = {}
|
| 273 |
+
# open file to store the output
|
| 274 |
+
with open(output_files_path + "/output.txt", 'w') as output_file:
|
| 275 |
+
output_file.write("# AP and precision/recall per class\n")
|
| 276 |
+
count_true_positives = {}
|
| 277 |
+
for class_index, class_name in enumerate(gt_classes):
|
| 278 |
+
count_true_positives[class_name] = 0
|
| 279 |
+
"""
|
| 280 |
+
Load detection-results of that class
|
| 281 |
+
"""
|
| 282 |
+
dr_file = temp_json_folder_path + "/" + class_name + "_dr.json"
|
| 283 |
+
dr_data = json.load(open(dr_file))
|
| 284 |
+
|
| 285 |
+
"""
|
| 286 |
+
Assign detection-results to ground-truth objects
|
| 287 |
+
"""
|
| 288 |
+
nd = len(dr_data)
|
| 289 |
+
tp = [0] * nd # creates an array of zeros of size nd
|
| 290 |
+
fp = [0] * nd
|
| 291 |
+
for idx, detection in enumerate(dr_data):
|
| 292 |
+
file_id = detection["file_id"]
|
| 293 |
+
gt_file = temp_json_folder_path + "/" + file_id + "_ground_truth.json"
|
| 294 |
+
ground_truth_data = json.load(open(gt_file))
|
| 295 |
+
ovmax = -1
|
| 296 |
+
gt_match = -1
|
| 297 |
+
# load detected object bounding-box
|
| 298 |
+
bb = [float(x) for x in detection["bbox"].split()]
|
| 299 |
+
for obj in ground_truth_data:
|
| 300 |
+
# look for a class_name match
|
| 301 |
+
if obj["class_name"] == class_name:
|
| 302 |
+
bbgt = [float(x) for x in obj["bbox"].split()]
|
| 303 |
+
bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])]
|
| 304 |
+
iw = bi[2] - bi[0] + 1
|
| 305 |
+
ih = bi[3] - bi[1] + 1
|
| 306 |
+
if iw > 0 and ih > 0:
|
| 307 |
+
# compute overlap (IoU) = area of intersection / area of union
|
| 308 |
+
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \
|
| 309 |
+
(bbgt[2] - bbgt[0]+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
|
| 310 |
+
ov = iw * ih / ua
|
| 311 |
+
if ov > ovmax:
|
| 312 |
+
ovmax = ov
|
| 313 |
+
gt_match = obj
|
| 314 |
+
|
| 315 |
+
min_overlap = 0.5
|
| 316 |
+
if ovmax >= min_overlap:
|
| 317 |
+
# if "difficult" not in gt_match:
|
| 318 |
+
if not bool(gt_match["used"]):
|
| 319 |
+
# true positive
|
| 320 |
+
tp[idx] = 1
|
| 321 |
+
gt_match["used"] = True
|
| 322 |
+
count_true_positives[class_name] += 1
|
| 323 |
+
# update the ".json" file
|
| 324 |
+
with open(gt_file, 'w') as f:
|
| 325 |
+
f.write(json.dumps(ground_truth_data))
|
| 326 |
+
else:
|
| 327 |
+
# false positive (multiple detection)
|
| 328 |
+
fp[idx] = 1
|
| 329 |
+
else:
|
| 330 |
+
fp[idx] = 1
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
# compute precision/recall
|
| 334 |
+
cumsum = 0
|
| 335 |
+
for idx, val in enumerate(fp):
|
| 336 |
+
fp[idx] += cumsum
|
| 337 |
+
cumsum += val
|
| 338 |
+
print('fp ', cumsum)
|
| 339 |
+
cumsum = 0
|
| 340 |
+
for idx, val in enumerate(tp):
|
| 341 |
+
tp[idx] += cumsum
|
| 342 |
+
cumsum += val
|
| 343 |
+
print('tp ', cumsum)
|
| 344 |
+
rec = tp[:]
|
| 345 |
+
for idx, val in enumerate(tp):
|
| 346 |
+
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
|
| 347 |
+
print('recall ', cumsum)
|
| 348 |
+
prec = tp[:]
|
| 349 |
+
for idx, val in enumerate(tp):
|
| 350 |
+
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
|
| 351 |
+
print('prec ', cumsum)
|
| 352 |
+
|
| 353 |
+
ap, mrec, mprec = voc_ap(rec[:], prec[:])
|
| 354 |
+
sum_AP += ap
|
| 355 |
+
text = "{0:.2f}%".format(
|
| 356 |
+
ap * 100) + " = " + class_name + " AP " # class_name + " AP = {0:.2f}%".format(ap*100)
|
| 357 |
+
|
| 358 |
+
print(text)
|
| 359 |
+
ap_dictionary[class_name] = ap
|
| 360 |
+
|
| 361 |
+
n_images = counter_images_per_class[class_name]
|
| 362 |
+
# lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images)
|
| 363 |
+
# lamr_dictionary[class_name] = lamr
|
| 364 |
+
|
| 365 |
+
"""
|
| 366 |
+
Draw plot
|
| 367 |
+
"""
|
| 368 |
+
if True:
|
| 369 |
+
plt.plot(rec, prec, '-o')
|
| 370 |
+
# add a new penultimate point to the list (mrec[-2], 0.0)
|
| 371 |
+
# since the last line segment (and respective area) do not affect the AP value
|
| 372 |
+
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
|
| 373 |
+
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
|
| 374 |
+
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
|
| 375 |
+
# set window title
|
| 376 |
+
fig = plt.gcf() # gcf - get current figure
|
| 377 |
+
fig.canvas.set_window_title('AP ' + class_name)
|
| 378 |
+
# set plot title
|
| 379 |
+
plt.title('class: ' + text)
|
| 380 |
+
# plt.suptitle('This is a somewhat long figure title', fontsize=16)
|
| 381 |
+
# set axis titles
|
| 382 |
+
plt.xlabel('Recall')
|
| 383 |
+
plt.ylabel('Precision')
|
| 384 |
+
# optional - set axes
|
| 385 |
+
axes = plt.gca() # gca - get current axes
|
| 386 |
+
axes.set_xlim([0.0, 1.0])
|
| 387 |
+
axes.set_ylim([0.0, 1.05]) # .05 to give some extra space
|
| 388 |
+
# Alternative option -> wait for button to be pressed
|
| 389 |
+
# while not plt.waitforbuttonpress(): pass # wait for key display
|
| 390 |
+
# Alternative option -> normal display
|
| 391 |
+
plt.show()
|
| 392 |
+
# save the plot
|
| 393 |
+
# fig.savefig(output_files_path + "/classes/" + class_name + ".png")
|
| 394 |
+
# plt.cla() # clear axes for next plot
|
| 395 |
+
|
| 396 |
+
# if show_animation:
|
| 397 |
+
# cv2.destroyAllWindows()
|
| 398 |
+
|
| 399 |
+
output_file.write("\n# mAP of all classes\n")
|
| 400 |
+
mAP = sum_AP / n_classes
|
| 401 |
+
text = "mAP = {0:.2f}%".format(mAP * 100)
|
| 402 |
+
output_file.write(text + "\n")
|
| 403 |
+
print(text)
|
| 404 |
+
|
| 405 |
+
"""
|
| 406 |
+
Count total of detection-results
|
| 407 |
+
"""
|
| 408 |
+
# iterate through all the files
|
| 409 |
+
det_counter_per_class = {}
|
| 410 |
+
for txt_file in dr_files_list:
|
| 411 |
+
# get lines to list
|
| 412 |
+
lines_list = read_txt_to_list(txt_file)
|
| 413 |
+
for line in lines_list:
|
| 414 |
+
class_name = line.split()[0]
|
| 415 |
+
# check if class is in the ignore list, if yes skip
|
| 416 |
+
# if class_name in args.ignore:
|
| 417 |
+
# continue
|
| 418 |
+
# count that object
|
| 419 |
+
if class_name in det_counter_per_class:
|
| 420 |
+
det_counter_per_class[class_name] += 1
|
| 421 |
+
else:
|
| 422 |
+
# if class didn't exist yet
|
| 423 |
+
det_counter_per_class[class_name] = 1
|
| 424 |
+
# print(det_counter_per_class)
|
| 425 |
+
dr_classes = list(det_counter_per_class.keys())
|
| 426 |
+
|
| 427 |
+
"""
|
| 428 |
+
Plot the total number of occurences of each class in the ground-truth
|
| 429 |
+
"""
|
| 430 |
+
if True:
|
| 431 |
+
window_title = "ground-truth-info"
|
| 432 |
+
plot_title = "ground-truth\n"
|
| 433 |
+
plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
|
| 434 |
+
x_label = "Number of objects per class"
|
| 435 |
+
output_path = output_files_path + "/ground-truth-info.png"
|
| 436 |
+
to_show = False
|
| 437 |
+
plot_color = 'forestgreen'
|
| 438 |
+
draw_plot_func(
|
| 439 |
+
gt_counter_per_class,
|
| 440 |
+
n_classes,
|
| 441 |
+
window_title,
|
| 442 |
+
plot_title,
|
| 443 |
+
x_label,
|
| 444 |
+
output_path,
|
| 445 |
+
to_show,
|
| 446 |
+
plot_color,
|
| 447 |
+
'',
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
"""
|
| 451 |
+
Finish counting true positives
|
| 452 |
+
"""
|
| 453 |
+
for class_name in dr_classes:
|
| 454 |
+
# if class exists in detection-result but not in ground-truth then there are no true positives in that class
|
| 455 |
+
if class_name not in gt_classes:
|
| 456 |
+
count_true_positives[class_name] = 0
|
| 457 |
+
# print(count_true_positives)
|
| 458 |
+
|
| 459 |
+
"""
|
| 460 |
+
Plot the total number of occurences of each class in the "detection-results" folder
|
| 461 |
+
"""
|
| 462 |
+
if True:
|
| 463 |
+
window_title = "detection-results-info"
|
| 464 |
+
# Plot title
|
| 465 |
+
plot_title = "detection-results\n"
|
| 466 |
+
plot_title += "(" + str(len(dr_files_list)) + " files and "
|
| 467 |
+
count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
|
| 468 |
+
plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
|
| 469 |
+
# end Plot title
|
| 470 |
+
x_label = "Number of objects per class"
|
| 471 |
+
output_path = output_files_path + "/detection-results-info.png"
|
| 472 |
+
to_show = False
|
| 473 |
+
plot_color = 'forestgreen'
|
| 474 |
+
true_p_bar = count_true_positives
|
| 475 |
+
draw_plot_func(
|
| 476 |
+
det_counter_per_class,
|
| 477 |
+
len(det_counter_per_class),
|
| 478 |
+
window_title,
|
| 479 |
+
plot_title,
|
| 480 |
+
x_label,
|
| 481 |
+
output_path,
|
| 482 |
+
to_show,
|
| 483 |
+
plot_color,
|
| 484 |
+
true_p_bar
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
"""
|
| 488 |
+
Draw mAP plot (Show AP's of all classes in decreasing order)
|
| 489 |
+
"""
|
| 490 |
+
if True:
|
| 491 |
+
window_title = "mAP"
|
| 492 |
+
plot_title = "mAP = {0:.2f}%".format(mAP * 100)
|
| 493 |
+
x_label = "Average Precision"
|
| 494 |
+
output_path = output_files_path + "/mAP.png"
|
| 495 |
+
to_show = True
|
| 496 |
+
plot_color = 'royalblue'
|
| 497 |
+
draw_plot_func(
|
| 498 |
+
ap_dictionary,
|
| 499 |
+
n_classes,
|
| 500 |
+
window_title,
|
| 501 |
+
plot_title,
|
| 502 |
+
x_label,
|
| 503 |
+
output_path,
|
| 504 |
+
to_show,
|
| 505 |
+
plot_color,
|
| 506 |
+
""
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
def predict_raw(self, img_path):
|
| 510 |
+
raw_img = cv2.imread(img_path)
|
| 511 |
+
print('img shape: ', raw_img.shape)
|
| 512 |
+
img = self.preprocess_img(raw_img)
|
| 513 |
+
imgs = np.expand_dims(img, axis=0)
|
| 514 |
+
return self.yolo_model.predict(imgs)
|
| 515 |
+
|
| 516 |
+
def predict_nonms(self, img_path, iou_threshold=0.413, score_threshold=0.1):
|
| 517 |
+
raw_img = cv2.imread(img_path)
|
| 518 |
+
print('img shape: ', raw_img.shape)
|
| 519 |
+
img = self.preprocess_img(raw_img)
|
| 520 |
+
imgs = np.expand_dims(img, axis=0)
|
| 521 |
+
yolov4_output = self.yolo_model.predict(imgs)
|
| 522 |
+
output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
|
| 523 |
+
pred_output = nms(output, self.img_size, self.num_classes, iou_threshold, score_threshold)
|
| 524 |
+
pred_output = [p.numpy() for p in pred_output]
|
| 525 |
+
detections = get_detection_data(img=raw_img,
|
| 526 |
+
model_outputs=pred_output,
|
| 527 |
+
class_names=self.class_names)
|
| 528 |
+
draw_bbox(raw_img, detections, cmap=self.class_color, random_color=True)
|
| 529 |
+
return detections
|
| 530 |
+
|