File size: 19,165 Bytes
3358886
 
8b87b6e
3358886
 
 
8b87b6e
 
3358886
8b87b6e
 
 
 
 
 
 
1db0637
3358886
 
8b87b6e
 
 
 
 
3358886
 
8b87b6e
 
3358886
8b87b6e
965aebe
 
 
 
 
8b87b6e
 
 
 
 
 
 
 
 
965aebe
3358886
8b87b6e
3358886
8b87b6e
3358886
 
 
8b87b6e
1db0637
8b87b6e
3358886
 
 
 
 
 
 
 
 
8b87b6e
3358886
 
 
8b87b6e
3358886
 
 
 
 
8b87b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3358886
8b87b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3358886
8b87b6e
3358886
8b87b6e
 
3358886
8b87b6e
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965aebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3358886
 
1db0637
 
 
 
 
 
 
 
 
3358886
965aebe
1db0637
 
 
 
 
3358886
1db0637
 
 
 
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b87b6e
3358886
 
 
 
 
 
 
 
 
8b87b6e
 
 
 
 
 
3358886
8b87b6e
3358886
 
 
 
 
 
8b87b6e
3358886
 
 
 
8b87b6e
3358886
 
 
 
 
 
 
 
 
8b87b6e
3358886
 
 
 
 
 
8b87b6e
3358886
 
8b87b6e
3358886
 
8b87b6e
 
 
 
3358886
 
1db0637
3358886
 
 
 
 
965aebe
 
8b87b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
965aebe
 
 
 
 
 
3358886
 
 
8b87b6e
 
 
 
 
 
 
 
 
3358886
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os
import re
import itertools
import random
import requests
import numpy as np
import gradio as gr
from newspaper import Article, fulltext
from nltk.tokenize import sent_tokenize
from sentence_transformers import SentenceTransformer, util, models
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import silhouette_score
import spacy
import en_core_sci_lg
import inflect
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch

import networkx as nx

import xml.etree.ElementTree as ET

# --- Global settings ---
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT']
PUBMED_N = 100
TOP_ABSTRACTS = 10

# --- Summarizer model options ---
model_options = {
    "Llama-3.2-1B-Instruct (Meta, gated)": "meta-llama/Llama-3.2-1B-Instruct",
    "Gemma-3-1B-it (Google, gated)": "google/gemma-3-1b-it",
    "TinyLlama-1.1B-Chat (Open)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
}
pipe_cache = {}

# --- Load static models ---
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
p = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words

indicator_phrases = [
    # ... (keep your full list from above)
    "found that", "findings suggest", "shows that", "showed that", "demonstrated", "demonstrates",
    # ... [trimmed for brevity]
    "according to", "a recent study", "researchers from"
]

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# --- Claim extraction ---
def extract_claims_pattern(article_text):
    sentences = sent_tokenize(article_text)
    claims = [
        s for s in sentences
        if any(phrase in s.lower() for phrase in indicator_phrases)
        or re.search(r"\b\d+(\.\d+)?%?\b", s)
    ]
    return list(dict.fromkeys(claims))  # deduplicate, preserve order

def match_claims_to_headline(claims, headline, sbert_model):
    headline_emb = sbert_model.encode([headline])
    claim_embs = sbert_model.encode(claims)
    sims = util.pytorch_cos_sim(headline_emb, claim_embs)[0]
    matched_claims = [claim for claim, sim in zip(claims, sims) if sim >= 0.6]
    if not matched_claims and claims:
        idxs = np.argsort(-sims.cpu().numpy())[:min(3, len(claims))]
        matched_claims = [claims[i] for i in idxs]
    return matched_claims

def keyphrase_groups_and_query(article_text, max_num_keywords, model_1, model_2, model_3):
    # TextRank with SBERT model_1
    corpus = sent_tokenize(article_text)
    indicator_list = indicator_phrases
    score_list, count_dict = [], {}
    for l in corpus:
        c = 0
        for l2 in indicator_list:
            if l.find(l2) != -1:
                c = 1
                break
        count_dict[l] = c
    for sent, score in count_dict.items():
        score_list.append(score)
    clean_sentences_new = [re.sub("[^a-zA-Z]", " ", s) for s in corpus]
    corpus_embeddings = model_1.encode(clean_sentences_new)
    sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
    for i in range(len(clean_sentences_new)):
        len_embeddings = len(corpus_embeddings[i])
        for j in range(len(clean_sentences_new)):
            if i != j:
                sim_mat[i][j] = cosine_similarity(
                    corpus_embeddings[i].reshape(1, len_embeddings),
                    corpus_embeddings[j].reshape(1, len_embeddings)
                )[0, 0]
    nx_graph = nx.from_numpy_array(sim_mat)
    scores = nx.pagerank(nx_graph, max_iter=1500)
    element = [scores[i] for i in range(len(corpus))]
    sum_list = [sc + lst for sc, lst in zip(score_list, element)]
    x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True)
    final_textrank_list = [elem[1] for elem in x]
    a = int((10 * len(final_textrank_list)) / 100.0)
    total = max(a, 5)
    document = [final_textrank_list[i] for i in range(total)]
    doc = " ".join(document)
    text_doc = []
    for i in document:
        doc_1 = nlp(i)
        text_doc.append([X.text for X in doc_1.ents])
    entity_list = [item for sublist in text_doc for item in sublist]
    entity_list = [word for word in entity_list if word not in all_stopwords]
    entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)]
    entity_list = list(dict.fromkeys(entity_list))
    doc_embedding = model_2.encode([doc])
    candidates = entity_list
    if not candidates:
        return "", []
    candidate_embeddings = model_2.encode(candidates)
    distances = cosine_similarity(doc_embedding, candidate_embeddings)
    top_n = min(max_num_keywords, len(candidates))
    keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
    # Clustering with model_3
    word_embedding_model = models.Transformer(model_3)
    pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
                                  pooling_mode_mean_tokens=True,
                                  pooling_mode_cls_token=False,
                                  pooling_mode_max_tokens=False)
    embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
    c_len = len(keyword_list)
    if c_len < 2:
        return " OR ".join(keyword_list), keyword_list
    keyword_embeddings = embedder.encode(keyword_list)
    silhouette_score_list = []
    cluster_list_final = []
    for num_clusters in range(1, top_n):
        clustering_model = KMeans(n_clusters=num_clusters)
        clustering_model.fit(keyword_embeddings)
        cluster_assignment = clustering_model.labels_
        clustered_sentences = [[] for _ in range(num_clusters)]
        for sentence_id, cluster_id in enumerate(cluster_assignment):
            clustered_sentences[cluster_id].append(keyword_list[sentence_id])
        cl_sent_len = len(clustered_sentences)
        list_cluster = list(clustered_sentences)
        cluster_list_final.append(list_cluster)
        if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1:
            silhouette_avg = 0
        elif c_len == cl_sent_len == 2:
            silhouette_avg = 1
        else:
            silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
        silhouette_score_list.append(silhouette_avg)
    res_dict = dict(zip(silhouette_score_list, cluster_list_final))
    cluster_items = res_dict[max(res_dict)]
    comb = []
    for i in cluster_items:
        z = ' OR '.join(i)
        comb.append("(" + z + ")")
    combinations = []
    for subset in itertools.combinations(comb, 2):
        combinations.append(subset)
    f1_list = []
    for s in combinations:
        final = ' AND '.join(s)
        f1_list.append("(" + final + ")")
    f_1 = ' OR '.join(f1_list)
    return f_1, keyword_list

def retrieve_pubmed_abstracts(article_text, headline, max_num_keywords, model_1, model_2, model_3):
    query, _ = keyphrase_groups_and_query(article_text, max_num_keywords, model_1, model_2, model_3)
    ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
    for q in [query, headline, article_text]:
        if not q:
            continue
        search_url = f"{ncbi_url}esearch.fcgi?db=pubmed&term={q}&retmax={PUBMED_N}&sort=relevance"
        r = requests.get(search_url)
        pmids = re.findall(r"<Id>(\d+)</Id>", r.text)
        if pmids:
            ids = ','.join(pmids)
            fetch_url = f"{ncbi_url}efetch.fcgi?db=pubmed&id={ids}&rettype=xml&retmax={PUBMED_N}"
            resp = requests.get(fetch_url)
            titles = re.findall(r"<ArticleTitle>(.*?)</ArticleTitle>", resp.text, flags=re.DOTALL)
            abstracts = re.findall(r"<AbstractText.*?>(.*?)</AbstractText>", resp.text, flags=re.DOTALL)
            if not abstracts:
                abstracts = [""] * len(titles)
            titles = [re.sub(r"\s+", " ", t).strip() for t in titles]
            abstracts = [re.sub(r"\s+", " ", a).strip() for a in abstracts]
            return titles, abstracts
    return [], []

def semantic_rerank_claim_abstracts(claim, titles, abstracts, model_4):
    doc_texts = [f"{t}. {a}" for t, a in zip(titles, abstracts)]
    doc_embs = model_4.encode(doc_texts)
    claim_emb = model_4.encode([claim])
    sims = util.pytorch_cos_sim(claim_emb, doc_embs)[0]
    idxs = np.argsort(-sims.cpu().numpy())[:TOP_ABSTRACTS]
    return [titles[i] for i in idxs], [abstracts[i] for i in idxs]

def extract_evidence_nli(claim, title, abstract):
    sentences = sent_tokenize(abstract)
    evidence = []
    for sent in sentences:
        encoding = nli_tokenizer(
            sent, claim,
            return_tensors='pt',
            truncation=True,
            max_length=256,
            padding=True
        )
        with torch.no_grad():
            outputs = nli_model(**encoding)
            probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
            max_idx = probs.argmax()
            label = NLI_LABELS[max_idx]
            score = float(probs[max_idx])
        evidence.append({
            "sentence": sent,
            "label": label,
            "score": score
        })
    return evidence

def get_summarizer(model_choice):
    model_id = model_options[model_choice]
    if model_id in pipe_cache:
        return pipe_cache[model_id]
    kwargs = {
        "model": model_id,
        "torch_dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
        "device_map": "auto",
        "max_new_tokens": 128
    }
    if any(gated in model_id for gated in ["meta-llama", "gemma"]):
        hf_token = os.environ.get("HF_TOKEN", None)
        if hf_token:
            kwargs["token"] = hf_token
        else:
            raise RuntimeError(f"Model '{model_choice}' requires a Hugging Face access token. Please set 'HF_TOKEN' as a Space secret or environment variable.")
    pipe_cache[model_id] = pipeline("text-generation", **kwargs)
    return pipe_cache[model_id]

def summarize_evidence_llm(claim, evidence_list, model_choice):
    support = [ev['sentence'] for ev in evidence_list if ev['label'] == 'ENTAILMENT']
    contradict = [ev['sentence'] for ev in evidence_list if ev['label'] == 'CONTRADICTION']
    messages = [
        {"role": "system", "content": "You are a helpful biomedical assistant. Summarize scientific evidence in plain English for the general public."},
        {"role": "user", "content":
            f"Claim: {claim}\n"
            f"Supporting evidence:\n" + ("\n".join(support) if support else "None") + "\n"
            f"Contradicting evidence:\n" + ("\n".join(contradict) if contradict else "None") + "\n"
            "Explain to a layperson: Is this claim likely true, false, or uncertain based on the evidence above? Give a brief and simple explanation in 2-3 sentences."
        }
    ]
    try:
        pipe = get_summarizer(model_choice)
        outputs = pipe(
            messages,
            max_new_tokens=96,
            do_sample=False,
            temperature=0.1,
        )
        out = outputs[0]["generated_text"]
        if isinstance(out, list) and "content" in out[-1]:
            return out[-1]["content"].strip()
        return out.strip()
    except Exception as e:
        return f"Summary could not be generated: {e}"

def format_evidence_html(evidence_list):
    color_map = {"ENTAILMENT":"#e6ffe6", "CONTRADICTION":"#ffe6e6", "NEUTRAL":"#f8f8f8"}
    html = ""
    for ev in evidence_list:
        color = color_map[ev["label"]]
        html += (
            f'<div style="background:{color};padding:6px;border-radius:6px;margin-bottom:3px">'
            f'<b>{ev["label"]}</b> (confidence {ev["score"]:.2f}): {ev["sentence"]}'
            '</div>'
        )
    return html

def factcheck_app(article_url, model_1_name, model_2_name, max_num_keywords, model_3_name, model_4_name, summarizer_choice):
    try:
        art = Article(article_url)
        art.download()
        art.parse()
        text = art.text
        headline = art.title
    except Exception as e:
        return f"<b>Error downloading or reading article:</b> {e}", None

    # Load all selected models
    model_1 = SentenceTransformer(model_1_name)
    model_2 = SentenceTransformer(model_2_name)
    model_3 = model_3_name  # used as model id string
    model_4 = SentenceTransformer(model_4_name)

    claims = extract_claims_pattern(text)
    matched_claims = match_claims_to_headline(claims, headline, model_1)
    if not matched_claims:
        return "<b>No check-worthy claims found that match the headline.</b>", None

    results_html = ""
    all_results = []
    for claim in matched_claims:
        titles, abstracts = retrieve_pubmed_abstracts(claim, headline, max_num_keywords, model_1, model_2, model_3)
        if not titles:
            results_html += f"<hr><b>Claim:</b> {claim}<br><i>No PubMed results found.</i><br>"
            all_results.append({"claim": claim, "summary": "No PubMed results found.", "evidence": []})
            continue
        top_titles, top_abstracts = semantic_rerank_claim_abstracts(claim, titles, abstracts, model_4)
        idx_non_top = random.choice([i for i in range(len(titles)) if i not in [titles.index(t) for t in top_titles]]) if len(titles) > len(top_titles) else None
        evidence_results = []
        for title, abstract in zip(top_titles, top_abstracts):
            evidence = extract_evidence_nli(claim, title, abstract)
            evidence_results.append({"title": title, "evidence": evidence})
        if idx_non_top is not None:
            control_ev = extract_evidence_nli(claim, titles[idx_non_top], abstracts[idx_non_top])
            evidence_results.append({"title": f"(Control) {titles[idx_non_top]}", "evidence": control_ev})
        all_evidence_sentences = [ev for abs_res in evidence_results for ev in abs_res["evidence"]]
        summary = summarize_evidence_llm(claim, all_evidence_sentences, summarizer_choice)
        results_html += f"<hr><b>Claim:</b> {claim}<br><b>Layman summary:</b> {summary}<br>"
        for abs_res in evidence_results:
            results_html += f"<br><b>Abstract:</b> {abs_res['title']}<br>{format_evidence_html(abs_res['evidence'])}"
        all_results.append({"claim": claim, "summary": summary, "evidence": evidence_results})
    return results_html, all_results

# --- Gradio UI ---
description = """
<b>What does this app do?</b><br>
This app extracts key scientific claims from a news article, finds the most relevant PubMed biomedical research papers using advanced keyphrase grouping and Boolean queries, checks which sentences in those papers support or contradict each claim, and gives you a plain-English summary verdict.<br><br>
<b>How to use it:</b><br>
1. Paste the link to a biomedical news article.<br>
2. Choose your models for each stage (or use defaults for best results).<br>
3. Pick a summarizer for layperson summary.<br>
4. Wait for the results.<br>
5. For each claim, you will see:<br>
- A plain summary of what research says.<br>
- Color-coded evidence sentences (green=support, red=contradict, gray=neutral).<br>
- The titles of the most relevant PubMed articles.<br><br>
<b>Everything is 100% open source and runs on this website—no personal info or cloud API needed.</b>
"""

iface = gr.Interface(
    fn=factcheck_app,
    inputs=[
        gr.Textbox(lines=2, label="Paste a news article URL"),
        gr.Dropdown(
            choices=[
                'sentence-transformers/all-mpnet-base-v2',
                'sentence-transformers/all-mpnet-base-v1',
                'sentence-transformers/all-distilroberta-v1',
                'sentence-transformers/gtr-t5-large',
                'pritamdeka/S-Bluebert-snli-multinli-stsb',
                'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                'pritamdeka/S-BioBert-snli-multinli-stsb',
                'sentence-transformers/stsb-mpnet-base-v2',
                'sentence-transformers/stsb-roberta-base-v2',
                'sentence-transformers/stsb-distilroberta-base-v2',
                'sentence-transformers/sentence-t5-large',
                'sentence-transformers/sentence-t5-base'
            ],
            value='sentence-transformers/all-mpnet-base-v2',
            label="SBERT model for TextRank"
        ),
        gr.Dropdown(
            choices=[
                'sentence-transformers/paraphrase-mpnet-base-v2',
                'sentence-transformers/all-mpnet-base-v1',
                'sentence-transformers/paraphrase-distilroberta-base-v1',
                'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
                'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
                'sentence-transformers/paraphrase-albert-small-v2',
                'sentence-transformers/paraphrase-albert-base-v2',
                'sentence-transformers/paraphrase-MiniLM-L12-v2',
                'sentence-transformers/paraphrase-MiniLM-L6-v2',
                'sentence-transformers/all-MiniLM-L12-v2',
                'sentence-transformers/all-distilroberta-v1',
                'sentence-transformers/paraphrase-TinyBERT-L6-v2',
                'sentence-transformers/paraphrase-MiniLM-L3-v2',
                'sentence-transformers/all-MiniLM-L6-v2'
            ],
            value='sentence-transformers/paraphrase-mpnet-base-v2',
            label="SBERT model for keyphrases"
        ),
        gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"),
        gr.Dropdown(
            choices=[
                'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
                'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'
            ],
            value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
            label="SapBERT model for clustering"
        ),
        gr.Dropdown(
            choices=[
                'pritamdeka/S-Bluebert-snli-multinli-stsb',
                'pritamdeka/S-BioBert-snli-multinli-stsb',
                'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
                'sentence-transformers/all-mpnet-base-v2'
            ],
            value='pritamdeka/S-BioBert-snli-multinli-stsb',
            label="SBERT model for abstracts"
        ),
        gr.Dropdown(
            choices=list(model_options.keys()),
            value="TinyLlama-1.1B-Chat (Open)",
            label="Choose summarizer model"
        )
    ],
    outputs=[gr.HTML(label="Fact-Check Results (Summary & Evidence)"), gr.JSON(label="All Results (JSON)")],
    title="BioMedical News Fact-Checking & Research Evidence Finder",
    description=description,
    examples=[[
        "https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
        'sentence-transformers/all-mpnet-base-v2',
        'sentence-transformers/paraphrase-mpnet-base-v2',
        10,
        'cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
        'pritamdeka/S-BioBert-snli-multinli-stsb',
        "TinyLlama-1.1B-Chat (Open)"
    ]],
    allow_flagging="never"
)

iface.launch(share=False, server_name='0.0.0.0', show_error=True)