File size: 11,480 Bytes
3358886
 
 
 
 
 
 
 
 
 
 
1db0637
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1db0637
 
 
 
 
 
 
 
 
 
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1db0637
 
 
 
 
 
 
 
 
 
 
3358886
1db0637
 
 
 
 
3358886
1db0637
 
 
 
 
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1db0637
3358886
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import re
import random
import gradio as gr
import requests
import numpy as np

from nltk.tokenize import sent_tokenize
from newspaper import Article

from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch

# --------- App settings ---------
PUBMED_N = 100    # Number of abstracts to retrieve initially
TOP_ABSTRACTS = 10  # Number of top semantic abstracts to keep per claim
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
SBERT_MODEL_NAME = "pritamdeka/S-BioBert-snli-multinli-stsb"
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT']

# --------- Indicator Phrases for Claim Extraction ---------
indicator_phrases = [
    "found that", "findings suggest", "shows that", "showed that", "demonstrated", "demonstrates",
    "revealed", "reveals", "suggests", "suggested", "indicated", "indicates", "reported", "reports",
    "was reported", "concluded", "concludes", "conclusion", "authors state", "stated", "data suggest",
    "observed", "observes", "study suggests", "study shows", "study found", "researchers found",
    "results indicate", "results show", "confirmed", "confirm", "confirming", "point to",
    "documented", "document", "evidence of", "evidence suggests",
    "associated with", "correlated with", "link between", "linked to", "relationship between",
    "was linked", "connected to", "relationship with", "tied to", "association with",
    "increase", "increases", "increased", "decrease", "decreases", "decreased",
    "greater risk", "lower risk", "higher risk", "reduced risk", "raises the risk", "reduces the risk",
    "risk of", "risk for", "likelihood of", "probability of", "chance of", "rate of", "incidence of",
    "prevalence of", "mortality", "survival rate", "death rate", "odds of", "number of", "percentage of", "percent of",
    "caused by", "causes", "cause", "resulted in", "results in", "leads to", "led to", "contributed to", "responsible for",
    "due to", "as a result", "because of",
    "randomized controlled trial", "RCT", "clinical trial", "participants", "enrolled", "sample size", "statistically significant",
    "compared to", "compared with", "versus", "compared against",
    "more than", "less than", "greater than", "lower than", "higher than", "significantly higher", "significantly lower",
    "significantly increased", "significantly decreased", "significant difference",
    "effect of", "impact of", "influence of", "predictor of", "predicts", "predictive of", "factor for", "determinant of",
    "plays a role in", "contributes to", "related to", "affects", "influences", "difference between",
    "according to", "a recent study", "researchers from"
]

# --------- Load models (global, once) ---------
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
sbert_model = SentenceTransformer(SBERT_MODEL_NAME)

# --- Load fast Llama-3.2-1B-Instruct summarizer pipeline ---
model_id = "meta-llama/Llama-3.2-1B-Instruct"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto",
    max_new_tokens=128,
)

def extract_claims_pattern(article_text):
    sentences = sent_tokenize(article_text)
    claims = [
        s for s in sentences
        if any(phrase in s.lower() for phrase in indicator_phrases)
        or re.search(r"\b\d+(\.\d+)?%?\b", s)
    ]
    return list(dict.fromkeys(claims))  # deduplicate, preserve order

def match_claims_to_headline(claims, headline, threshold=0.6):
    headline_emb = sbert_model.encode([headline])
    claim_embs = sbert_model.encode(claims)
    sims = util.pytorch_cos_sim(headline_emb, claim_embs)[0]
    matched_claims = [claim for claim, sim in zip(claims, sims) if sim >= threshold]
    # fallback: top 3 by similarity
    if not matched_claims and claims:
        idxs = np.argsort(-sims.cpu().numpy())[:min(3, len(claims))]
        matched_claims = [claims[i] for i in idxs]
    return matched_claims

def retrieve_pubmed_abstracts(claim, n=PUBMED_N):
    ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
    query = '+'.join(re.findall(r'\w+', claim))
    search_url = f"{ncbi_url}esearch.fcgi?db=pubmed&term={query}&retmax={n}&sort=relevance"
    r = requests.get(search_url)
    pmids = re.findall(r"<Id>(\d+)</Id>", r.text)
    if not pmids:
        return [], []
    ids = ','.join(pmids)
    fetch_url = f"{ncbi_url}efetch.fcgi?db=pubmed&id={ids}&rettype=xml&retmax={n}"
    resp = requests.get(fetch_url)
    titles = re.findall(r"<ArticleTitle>(.*?)</ArticleTitle>", resp.text, flags=re.DOTALL)
    abstracts = re.findall(r"<AbstractText.*?>(.*?)</AbstractText>", resp.text, flags=re.DOTALL)
    if not abstracts:
        abstracts = [""] * len(titles)
    titles = [re.sub(r"\s+", " ", t).strip() for t in titles]
    abstracts = [re.sub(r"\s+", " ", a).strip() for a in abstracts]
    return titles, abstracts

def semantic_rerank_claim_abstracts(claim, titles, abstracts, top_k=TOP_ABSTRACTS):
    doc_texts = [f"{t}. {a}" for t, a in zip(titles, abstracts)]
    doc_embs = sbert_model.encode(doc_texts)
    claim_emb = sbert_model.encode([claim])
    sims = util.pytorch_cos_sim(claim_emb, doc_embs)[0]
    idxs = np.argsort(-sims.cpu().numpy())[:top_k]
    return [titles[i] for i in idxs], [abstracts[i] for i in idxs]

def extract_evidence_nli(claim, title, abstract):
    sentences = sent_tokenize(abstract)
    evidence = []
    for sent in sentences:
        encoding = nli_tokenizer(
            sent, claim,
            return_tensors='pt',
            truncation=True,
            max_length=256,
            padding=True
        )
        with torch.no_grad():
            outputs = nli_model(**encoding)
            probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
            max_idx = probs.argmax()
            label = NLI_LABELS[max_idx]
            score = float(probs[max_idx])
        evidence.append({
            "sentence": sent,
            "label": label,
            "score": score
        })
    return evidence

def summarize_evidence_llm(claim, evidence_list):
    support = [ev['sentence'] for ev in evidence_list if ev['label'] == 'ENTAILMENT']
    contradict = [ev['sentence'] for ev in evidence_list if ev['label'] == 'CONTRADICTION']

    # Compose prompt for summarization.
    messages = [
        {"role": "system", "content": "You are a helpful biomedical assistant. Summarize scientific evidence in plain English for the general public."},
        {"role": "user", "content":
            f"Claim: {claim}\n"
            f"Supporting evidence:\n" + ("\n".join(support) if support else "None") + "\n"
            f"Contradicting evidence:\n" + ("\n".join(contradict) if contradict else "None") + "\n"
            "Explain to a layperson: Is this claim likely true, false, or uncertain based on the evidence above? Give a brief and simple explanation in 2-3 sentences."
        }
    ]
    try:
        outputs = pipe(
            messages,
            max_new_tokens=96,
            do_sample=False,
            temperature=0.1,
        )
        out = outputs[0]["generated_text"]
        # If the model returns all messages, just take the last message (often the answer).
        if isinstance(out, list) and "content" in out[-1]:
            return out[-1]["content"].strip()
        return out.strip()
    except Exception as e:
        return f"Summary could not be generated: {e}"

def format_evidence_html(evidence_list):
    color_map = {"ENTAILMENT":"#e6ffe6", "CONTRADICTION":"#ffe6e6", "NEUTRAL":"#f8f8f8"}
    html = ""
    for ev in evidence_list:
        color = color_map[ev["label"]]
        html += (
            f'<div style="background:{color};padding:6px;border-radius:6px;margin-bottom:3px">'
            f'<b>{ev["label"]}</b> (confidence {ev["score"]:.2f}): {ev["sentence"]}'
            '</div>'
        )
    return html

def factcheck_app(article_url):
    try:
        art = Article(article_url)
        art.download()
        art.parse()
        text = art.text
        headline = art.title
    except Exception as e:
        return f"<b>Error downloading or reading article:</b> {e}", None

    claims = extract_claims_pattern(text)
    matched_claims = match_claims_to_headline(claims, headline)
    if not matched_claims:
        return "<b>No check-worthy claims found that match the headline.</b>", None

    results_html = ""
    all_results = []
    for claim in matched_claims:
        titles, abstracts = retrieve_pubmed_abstracts(claim)
        if not titles:
            results_html += f"<hr><b>Claim:</b> {claim}<br><i>No PubMed results found.</i><br>"
            all_results.append({"claim": claim, "summary": "No PubMed results found.", "evidence": []})
            continue
        top_titles, top_abstracts = semantic_rerank_claim_abstracts(claim, titles, abstracts)
        idx_non_top = random.choice([i for i in range(len(titles)) if i not in [titles.index(t) for t in top_titles]]) if len(titles) > len(top_titles) else None
        evidence_results = []
        for title, abstract in zip(top_titles, top_abstracts):
            evidence = extract_evidence_nli(claim, title, abstract)
            evidence_results.append({"title": title, "evidence": evidence})
        if idx_non_top is not None:
            control_ev = extract_evidence_nli(claim, titles[idx_non_top], abstracts[idx_non_top])
            evidence_results.append({"title": f"(Control) {titles[idx_non_top]}", "evidence": control_ev})
        all_evidence_sentences = [ev for abs_res in evidence_results for ev in abs_res["evidence"]]
        summary = summarize_evidence_llm(claim, all_evidence_sentences)
        results_html += f"<hr><b>Claim:</b> {claim}<br><b>Layman summary:</b> {summary}<br>"
        for abs_res in evidence_results:
            results_html += f"<br><b>Abstract:</b> {abs_res['title']}<br>{format_evidence_html(abs_res['evidence'])}"
        all_results.append({"claim": claim, "summary": summary, "evidence": evidence_results})
    return results_html, all_results

description = """
<b>What does this app do?</b><br>
This app extracts key scientific claims from a news article, finds the most relevant PubMed biomedical research papers, checks which sentences in those papers support or contradict each claim, and gives you a plain-English summary verdict.<br><br>
<b>How to use it:</b><br>
1. Paste the link to a biomedical news article.<br>
2. Wait for the results.<br>
3. For each claim, you will see:<br>
- A plain summary of what research says.<br>
- Color-coded evidence sentences (green=support, red=contradict, gray=neutral).<br>
- The titles of the most relevant PubMed articles.<br><br>
<b>Everything is 100% open source and runs on this website—no personal info or cloud API needed.</b>
"""

iface = gr.Interface(
    fn=factcheck_app,
    inputs=gr.Textbox(lines=2, label="Paste a news article URL"),
    outputs=[gr.HTML(label="Fact-Check Results (Summary & Evidence)"), gr.JSON(label="All Results (JSON)")],
    title="BioMedical News Fact-Checking & Research Evidence Finder",
    description=description,
    examples=[["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant"]],
    allow_flagging="never"
)

iface.launch(share=False, server_name='0.0.0.0', show_error=True)