Spaces:
Sleeping
Sleeping
File size: 14,974 Bytes
3358886 8b87b6e fc63a12 3358886 fc63a12 8b87b6e 81c18c4 8b87b6e 1db0637 3358886 e735225 3358886 fc63a12 81c18c4 3358886 fc63a12 3358886 fc63a12 8b87b6e 3358886 e735225 8b87b6e fc63a12 3358886 090aa41 fc63a12 090aa41 fc63a12 3358886 fc63a12 3358886 fc63a12 81c18c4 fc63a12 3358886 8b87b6e 3358886 81c18c4 fc63a12 3358886 fc63a12 3358886 fc63a12 3358886 e735225 3358886 e735225 3358886 81c18c4 e735225 81c18c4 e735225 81c18c4 965aebe 3358886 81c18c4 3358886 965aebe 1db0637 81c18c4 2ff0c49 1db0637 3358886 1db0637 3358886 fc63a12 3358886 fc63a12 3358886 e735225 3358886 e735225 3358886 fc63a12 3358886 e735225 3358886 8b87b6e 3358886 e735225 3358886 81c18c4 fc63a12 3358886 e735225 3358886 965aebe 3358886 fc63a12 3358886 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import re
import random
import requests
import gradio as gr
import numpy as np
import nltk
from newspaper import Article
from nltk.tokenize import sent_tokenize
from sentence_transformers import SentenceTransformer, util
import spacy
import nltkmodule
import en_core_sci_lg
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
#nltk.download('punkt')
# --- Models (load once, globally) ---
scispacy = en_core_sci_lg.load()
sbert_keybert = SentenceTransformer("pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb")
sbert_rerank = SentenceTransformer("pritamdeka/S-PubMedBert-MS-MARCO")
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI"
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME)
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME)
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT']
PUBMED_N = 100
TOP_ABSTRACTS = 10
# --- Sentence section classifier model (BioBert-PubMed200kRCT) ---
EVIDENCE_MODEL = "pritamdeka/BioBert-PubMed200kRCT"
evidence_tokenizer = AutoTokenizer.from_pretrained(EVIDENCE_MODEL)
evidence_model = AutoModelForSequenceClassification.from_pretrained(EVIDENCE_MODEL)
label_map = {0: "BACKGROUND", 1: "OBJECTIVE", 2: "METHODS", 3: "RESULTS", 4: "CONCLUSIONS"}
def extract_evidence_sentences_from_abstract(abstract, keep_labels=("RESULTS", "CONCLUSIONS")):
sents = sent_tokenize(abstract)
evidence_sents = []
for s in sents:
inputs = evidence_tokenizer(s, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
logits = evidence_model(**inputs).logits
pred = torch.argmax(logits, dim=1).item()
label = label_map[pred]
if label in keep_labels:
evidence_sents.append((label, s))
return evidence_sents
# --- Europe PMC retrieval ---
def retrieve_europepmc_abstracts_simple(text, n=TOP_ABSTRACTS):
query = get_keybert_query(text, top_n=7)
print("Trying Europe PMC query:", query)
url = f'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query={query}&resulttype=core&format=json&pageSize={n}'
r = requests.get(url)
results = r.json().get('resultList', {}).get('result', [])
titles = [res.get('title', '') for res in results]
abstracts = [res.get('abstractText', '') for res in results]
return titles, abstracts
# --- Utility: get robust keybert-style query ---
def get_keybert_query(text, top_n=10):
doc = scispacy(text)
phrases = [ent.text for ent in doc.ents]
if not phrases:
phrases = [chunk.text for chunk in doc.noun_chunks]
phrases = list(set([ph.strip() for ph in phrases if len(ph) > 2]))
if not phrases:
return ""
doc_emb = sbert_keybert.encode([text])
phrase_embs = sbert_keybert.encode(phrases)
sims = np.array(util.pytorch_cos_sim(doc_emb, phrase_embs))[0]
top_idxs = sims.argsort()[-top_n:]
keywords = [phrases[i] for i in top_idxs]
query = " OR ".join(f'"{kw}"' for kw in keywords)
return query
# --- Claim extraction ---
indicator_phrases = [
"found that", "findings suggest", "shows that", "showed that", "demonstrated", "demonstrates",
"revealed", "reveals", "suggests", "suggested", "indicated", "indicates", "reported", "reports",
"was reported", "concluded", "concludes", "conclusion", "authors state", "stated", "data suggest",
"observed", "observes", "study suggests", "study shows", "study found", "researchers found",
"results indicate", "results show", "confirmed", "confirm", "confirming", "point to",
"documented", "document", "evidence of", "evidence suggests", "associated with", "correlated with",
"link between", "linked to", "relationship between", "was linked", "connected to", "relationship with",
"tied to", "association with", "increase", "increases", "increased", "decrease", "decreases", "decreased",
"greater risk", "lower risk", "higher risk", "reduced risk", "raises the risk", "reduces the risk",
"risk of", "risk for", "likelihood of", "probability of", "chance of", "rate of", "incidence of",
"prevalence of", "mortality", "survival rate", "death rate", "odds of", "number of", "percentage of",
"percent of", "caused by", "causes", "cause", "resulted in", "results in", "leads to", "led to",
"contributed to", "responsible for", "due to", "as a result", "because of",
"randomized controlled trial", "RCT", "clinical trial", "participants", "enrolled", "sample size",
"statistically significant", "compared to", "compared with", "versus", "compared against",
"more than", "less than", "greater than", "lower than", "higher than", "significantly higher",
"significantly lower", "significantly increased", "significantly decreased", "significant difference",
"effect of", "impact of", "influence of", "predictor of", "predicts", "predictive of", "factor for",
"determinant of", "plays a role in", "contributes to", "related to", "affects", "influences",
"difference between", "according to", "a recent study", "researchers from"
]
def extract_claims_pattern(article_text):
sentences = sent_tokenize(article_text)
claims = [
s for s in sentences
if any(phrase in s.lower() for phrase in indicator_phrases)
or re.search(r"\b\d+(\.\d+)?%?\b", s)
]
return list(dict.fromkeys(claims))
def match_claims_to_headline(claims, headline):
emb_model = sbert_keybert
headline_emb = emb_model.encode([headline])
claim_embs = emb_model.encode(claims)
sims = util.pytorch_cos_sim(headline_emb, claim_embs)[0]
matched_claims = [claim for claim, sim in zip(claims, sims) if sim >= 0.6]
if not matched_claims and claims:
idxs = np.argsort(-sims.cpu().numpy())[:min(3, len(claims))]
matched_claims = [claims[i] for i in idxs]
return matched_claims
# --- Semantic reranking ---
def semantic_rerank_claim_abstracts(claim, titles, abstracts, top_k=TOP_ABSTRACTS):
doc_texts = [f"{t}. {a}" for t, a in zip(titles, abstracts)]
doc_embs = sbert_rerank.encode(doc_texts)
claim_emb = sbert_rerank.encode([claim])
sims = util.pytorch_cos_sim(claim_emb, doc_embs)[0]
idxs = np.argsort(-sims.cpu().numpy())[:top_k]
return [titles[i] for i in idxs], [abstracts[i] for i in idxs]
# --- NLI evidence extraction (run only on results/conclusion sentences) ---
def extract_evidence_nli(claim, evidence_sentences):
evidence = []
for sent in evidence_sentences:
encoding = nli_tokenizer(
sent, claim,
return_tensors='pt',
truncation=True,
max_length=256,
padding=True
)
with torch.no_grad():
outputs = nli_model(**encoding)
probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten()
max_idx = probs.argmax()
label = NLI_LABELS[max_idx]
score = float(probs[max_idx])
evidence.append({
"sentence": sent,
"label": label,
"score": score
})
return evidence
# --- Summarizer model options (now with Mistral API!) ---
model_options = {
"Mistral Small (API, fast/free)": "mistral-small-2503",
"Llama-3.2-1B-Instruct (Meta, gated)": "meta-llama/Llama-3.2-1B-Instruct",
"Gemma-3-1B-it (Google, gated)": "google/gemma-3-1b-it",
"TinyLlama-1.1B-Chat (Open)": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
}
pipe_cache = {}
# --- Mistral API summarization ---
def summarize_with_mistral_api(prompt, model_name="mistral-small", max_tokens=128, temperature=0.1):
api_key = os.getenv("MISTRAL_API_KEY")
if not api_key:
return "Missing MISTRAL_API_KEY secret/env variable!"
endpoint = "https://api.mistral.ai/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": model_name,
"messages": [{"role": "user", "content": prompt}],
"max_tokens": max_tokens,
"temperature": temperature
}
response = requests.post(endpoint, headers=headers, json=data, timeout=30)
if response.status_code == 200:
content = response.json()["choices"][0]["message"]["content"]
return content.strip()
else:
return f"API Error ({response.status_code}): {response.text}"
def get_summarizer(model_choice):
model_id = model_options[model_choice]
if model_id in pipe_cache:
return pipe_cache[model_id]
kwargs = {
"model": model_id,
"torch_dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
"device_map": "auto",
"max_new_tokens": 128
}
if any(gated in model_id for gated in ["meta-llama", "gemma"]):
hf_token = os.environ.get("HF_TOKEN", None)
if hf_token:
kwargs["token"] = hf_token
else:
raise RuntimeError(f"Model '{model_choice}' requires a Hugging Face access token. Please set 'HF_TOKEN' as a Space secret or environment variable.")
pipe_cache[model_id] = pipeline("text-generation", **kwargs)
return pipe_cache[model_id]
def summarize_evidence_llm(claim, evidence_list, model_choice):
support = [ev['sentence'] for ev in evidence_list if ev['label'] == 'ENTAILMENT']
contradict = [ev['sentence'] for ev in evidence_list if ev['label'] == 'CONTRADICTION']
user_prompt = (
f"Claim: {claim}\n"
f"Supporting evidence:\n" + ("\n".join(support) if support else "None") + "\n"
f"Contradicting evidence:\n" + ("\n".join(contradict) if contradict else "None") + "\n"
"Explain to a layperson: Is this claim likely true, false, or uncertain based on the evidence above? Give a brief and simple explanation in 2-3 sentences."
)
if model_choice in [
"Mistral Small (API, fast/free)",
"Mistral Medium (API, free tier)",
"Mistral Large (API, may require paid)"
]:
mistral_name = model_options[model_choice]
return summarize_with_mistral_api(user_prompt, model_name=mistral_name)
try:
pipe = get_summarizer(model_choice)
outputs = pipe(
[
{"role": "system", "content": "You are a helpful biomedical assistant. Summarize scientific evidence in plain English for the general public."},
{"role": "user", "content": user_prompt}
],
max_new_tokens=128,
do_sample=False,
temperature=0.1,
)
out = outputs[0]["generated_text"]
if isinstance(out, list) and "content" in out[-1]:
return out[-1]["content"].strip()
return out.strip()
except Exception as e:
return f"Summary could not be generated: {e}"
def format_evidence_html(evidence_list):
color_map = {"ENTAILMENT":"#e6ffe6", "CONTRADICTION":"#ffe6e6", "NEUTRAL":"#f8f8f8"}
html = ""
for ev in evidence_list:
color = color_map[ev["label"]]
html += (
f'<div style="background:{color};padding:6px;border-radius:6px;margin-bottom:3px">'
f'<b>{ev["label"]}</b> (confidence {ev["score"]:.2f}): {ev["sentence"]}'
'</div>'
)
return html
def factcheck_app(article_url, summarizer_choice):
try:
art = Article(article_url)
art.download()
art.parse()
text = art.text
headline = art.title
except Exception as e:
return f"<b>Error downloading or reading article:</b> {e}", None
claims = extract_claims_pattern(text)
matched_claims = match_claims_to_headline(claims, headline)
if not matched_claims:
return "<b>No check-worthy claims found that match the headline.</b>", None
results_html = ""
all_results = []
for claim in matched_claims:
titles, abstracts = retrieve_europepmc_abstracts_simple(claim)
if not titles:
results_html += f"<hr><b>Claim:</b> {claim}<br><i>No relevant abstracts found in Europe PMC.</i><br>"
all_results.append({"claim": claim, "summary": "No abstracts found.", "evidence": []})
continue
top_titles, top_abstracts = semantic_rerank_claim_abstracts(claim, titles, abstracts)
evidence_results = []
for title, abstract in zip(top_titles, top_abstracts):
ev_sents = extract_evidence_sentences_from_abstract(abstract)
if ev_sents:
sent_list = [s for lbl, s in ev_sents]
else:
sent_list = sent_tokenize(abstract)
evidence = extract_evidence_nli(claim, sent_list)
evidence_results.append({"title": title, "evidence": evidence})
all_evidence_sentences = [ev for abs_res in evidence_results for ev in abs_res["evidence"]]
summary = summarize_evidence_llm(claim, all_evidence_sentences, summarizer_choice)
results_html += f"<hr><b>Claim:</b> {claim}<br><b>Layman summary:</b> {summary}<br>"
for abs_res in evidence_results:
results_html += f"<br><b>Abstract:</b> {abs_res['title']}<br>{format_evidence_html(abs_res['evidence'])}"
all_results.append({"claim": claim, "summary": summary, "evidence": evidence_results})
return results_html, all_results
description = """
<b>What does this app do?</b><br>
This app extracts key scientific claims from a news article, finds the most relevant biomedical research papers using robust keyphrase extraction and semantic reranking, checks which sentences in those papers support or contradict each claim, and gives you a plain-English summary verdict.<br><br>
<b>How to use it:</b><br>
1. Paste the link to a biomedical news article.<br>
2. Choose an AI summarizer model below. If you have no special access, use 'TinyLlama' or 'Mistral Small' (works for everyone, free).<br>
3. Wait for the results.<br>
4. For each claim, you will see:<br>
- A plain summary of what research says.<br>
- Color-coded evidence sentences (green=support, red=contradict, gray=neutral).<br>
- The titles of the most relevant research articles.<br><br>
<b>Everything is 100% open source and runs on this website—no personal info or cloud API needed.</b>
"""
iface = gr.Interface(
fn=factcheck_app,
inputs=[
gr.Textbox(lines=2, label="Paste a news article URL"),
gr.Dropdown(
choices=list(model_options.keys()),
value="TinyLlama-1.1B-Chat (Open)",
label="Choose summarizer model"
)
],
outputs=[gr.HTML(label="Fact-Check Results (Summary & Evidence)"), gr.JSON(label="All Results (JSON)")],
title="BioMedical News Fact-Checking & Research Evidence Finder",
description=description,
examples=[["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant", "TinyLlama-1.1B-Chat (Open)"]],
allow_flagging="never"
)
iface.launch(share=False, server_name='0.0.0.0', show_error=True)
|