File size: 7,869 Bytes
2230883
8b14dd2
ee317af
 
8a2ba41
8b14dd2
 
 
 
8a2ba41
571721c
 
 
891571d
8b14dd2
 
 
 
65928b6
891571d
8b14dd2
 
 
 
65928b6
891571d
8b14dd2
65928b6
891571d
ee317af
5663d15
8b14dd2
20346f9
 
8b14dd2
ee317af
7d0e511
ee317af
ddfc2a2
8a2ba41
 
 
 
ddfc2a2
8a2ba41
 
 
 
ddfc2a2
8a2ba41
 
 
 
ddfc2a2
8a2ba41
 
 
 
ddfc2a2
8a2ba41
 
8b14dd2
ddfc2a2
8a2ba41
 
 
891571d
ddfc2a2
 
 
8a2ba41
891571d
d119874
8b14dd2
8a2ba41
ddfc2a2
 
8a2ba41
 
 
 
 
 
ddfc2a2
65928b6
8a2ba41
ddfc2a2
 
 
 
 
 
 
 
8b14dd2
8a2ba41
 
ddfc2a2
 
 
 
8a2ba41
 
ddfc2a2
5663d15
 
8a2ba41
ddfc2a2
8a2ba41
ddfc2a2
8a2ba41
 
 
 
 
891571d
8b14dd2
 
 
 
 
 
65928b6
891571d
8b14dd2
891571d
46d3028
891571d
 
 
 
 
8b14dd2
891571d
8b14dd2
 
cbc2b17
891571d
ddfc2a2
571721c
8b14dd2
ddfc2a2
 
 
 
 
 
 
46d3028
 
ddfc2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b14dd2
ddfc2a2
 
 
 
 
 
8b14dd2
ddfc2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b14dd2
 
 
 
 
 
 
 
ddfc2a2
 
8b14dd2
 
 
 
 
 
ddfc2a2
8b14dd2
 
 
 
dc7f40f
ee317af
c050a50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np

DESCRIPTION = """## 
"""

# Function to save an image with a unique name
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

# Function to handle seed randomization
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

# Maximum seed value for 32-bit integer
MAX_SEED = np.iinfo(np.int32).max

# Load the diffusion model
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"  # Leave blank if not used

pipe.load_lora_weights(lora_repo)
pipe.to("cuda")

# Define style options with negative prompts
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

# Apply selected style to the prompt
def apply_style(style_name: str, positive: str) -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n

# Image generation function with Spaces GPU support
@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    num_inference_steps: int = 30,
    progress=gr.Progress(track_tqdm=True),
):
    positive_prompt, style_negative_prompt = apply_style(style_name, prompt)
    
    if use_negative_prompt:
        final_negative_prompt = style_negative_prompt + " " + negative_prompt
    else:
        final_negative_prompt = style_negative_prompt
    
    final_negative_prompt = final_negative_prompt.strip()
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    images = pipe(
        prompt=positive_prompt,
        negative_prompt=final_negative_prompt if final_negative_prompt else None,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=1,
        generator=generator,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

# Example prompts
examples = [
    "Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
    "Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
    "Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
    "Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The womans eyes are closed, her lips are slightly parted, as if she is looking up at the sky. Her hair is cascading over her shoulders, framing her face. She is wearing a sleeveless top, adorned with tiny white dots, and a gold chain necklace around her neck. Her left earrings are dangling from her ears, adding a pop of color to the scene."
]

# CSS to center the UI and style components
css = '''
.gradio-container {
    max-width: 590px !important;
    margin: 0 auto !important;
}
h1 {
    text-align: center;
}
footer {
    visibility: hidden;
}
'''

# Gradio interface
with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0, variant="primary")
    result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
    
    with gr.Accordion("Advanced options", open=False):
        style_selection = gr.Dropdown(
            label="Quality Style",
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            interactive=True,
        )
        use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=64,
                value=1280,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=64,
                value=832,
            )
        guidance_scale = gr.Slider(
            label="Guidance Scale",
            minimum=0.1,
            maximum=20.0,
            step=0.1,
            value=3.0,
        )
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=40,
            step=1,
            value=30,
        )
    
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )
    
    # Handle visibility of negative prompt
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    
    # Trigger generate on prompt submit or run button click
    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
            num_inference_steps,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch(ssr_mode=False)