Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline | |
| import random | |
| import uuid | |
| from typing import Tuple | |
| import numpy as np | |
| DESCRIPTIONz = """## FLUX REALISM """ | |
| DESCRIPTIONy = """ | |
| <p align="left"> | |
| <a title="Github" href="https://github.com/PRITHIVSAKTHIUR/FLUX-REALPIX" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
| <img src="https://img.shields.io/github/stars/PRITHIVSAKTHIUR/FLUX-REALPIX?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
| </a> | |
| </p> | |
| """ | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| MAX_SEED = np.iinfo(np.int32).max | |
| if not torch.cuda.is_available(): | |
| DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
| lora_repo = "prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0" | |
| trigger_word = "Ultra realistic" # Leave trigger_word blank if not used. | |
| pipe.load_lora_weights(lora_repo) | |
| pipe.to("cuda") | |
| style_list = [ | |
| { | |
| "name": "3840 x 2160", | |
| "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| }, | |
| { | |
| "name": "2560 x 1440", | |
| "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| }, | |
| { | |
| "name": "HD+", | |
| "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
| }, | |
| { | |
| "name": "Style Zero", | |
| "prompt": "{prompt}", | |
| }, | |
| ] | |
| styles = {k["name"]: k["prompt"] for k in style_list} | |
| DEFAULT_STYLE_NAME = "3840 x 2160" | |
| STYLE_NAMES = list(styles.keys()) | |
| def apply_style(style_name: str, positive: str) -> str: | |
| return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive) | |
| def generate( | |
| prompt: str, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| randomize_seed: bool = False, | |
| style_name: str = DEFAULT_STYLE_NAME, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| positive_prompt = apply_style(style_name, prompt) | |
| if trigger_word: | |
| positive_prompt = f"{trigger_word} {positive_prompt}" | |
| images = pipe( | |
| prompt=positive_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=16, | |
| num_images_per_prompt=1, | |
| output_type="pil", | |
| ).images | |
| image_paths = [save_image(img) for img in images] | |
| print(image_paths) | |
| return image_paths, seed | |
| def load_predefined_images(): | |
| predefined_images = [ | |
| "assets/11.png", | |
| "assets/22.png", | |
| "assets/33.png", | |
| "assets/44.png", | |
| "assets/55.webp", | |
| "assets/66.png", | |
| "assets/77.png", | |
| "assets/88.png", | |
| "assets/99.png", | |
| ] | |
| return predefined_images | |
| examples = [ | |
| "A portrait of an attractive woman in her late twenties with light brown hair and purple, wearing large a a yellow sweater. She is looking directly at the camera, standing outdoors near trees.. --ar 128:85 --v 6.0 --style raw", | |
| "A photo of the model wearing a white bodysuit and beige trench coat, posing in front of a train station with hands on head, soft light, sunset, fashion photography, high resolution, 35mm lens, f/22, natural lighting, global illumination. --ar 85:128 --v 6.0 --style raw", | |
| ] | |
| css = ''' | |
| .gradio-container{max-width: 595px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown(DESCRIPTIONz) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", columns=1, show_label=False) | |
| with gr.Accordion("Advanced options", open=False, visible=True): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| visible=True | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=2048, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=2048, | |
| step=64, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=20.0, | |
| step=0.1, | |
| value=3.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=40, | |
| step=1, | |
| value=16, | |
| ) | |
| style_selection = gr.Radio( | |
| show_label=True, | |
| container=True, | |
| interactive=True, | |
| choices=STYLE_NAMES, | |
| value=DEFAULT_STYLE_NAME, | |
| label="Quality Style", | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result, seed], | |
| fn=generate, | |
| cache_examples=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| style_selection, | |
| ], | |
| outputs=[result, seed], | |
| api_name="run", | |
| ) | |
| gr.Markdown("### Generated Images") | |
| predefined_gallery = gr.Gallery(label="Generated Images", columns=3, show_label=False, value=load_predefined_images()) | |
| gr.Markdown("**Disclaimer/Note:**") | |
| gr.Markdown(DESCRIPTIONy) | |
| #gr.Markdown("🔥This space provides realistic image generation, which works better for human faces and portraits. Realistic trigger works properly, better for photorealistic trigger words, close-up shots, face diffusion, male, female characters.") | |
| #gr.Markdown("🔥users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.") | |
| gr.Markdown(""" | |
| <div style='text-align: justify;'> | |
| 🔥This space provides realistic image generation, which works better for human faces and portraits. Realistic trigger works properly, better for photorealistic trigger words, close-up shots, face diffusion, male, female characters. | |
| </div>""") | |
| gr.Markdown(""" | |
| <div style='text-align: justify;'> | |
| 🔥Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards. | |
| </div>""") | |
| if __name__ == "__main__": | |
| demo.queue(max_size=40).launch() |