Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,681 Bytes
ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 871cc8b ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 ed275c9 5d63d59 6f09ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
# Define model options
MODEL_OPTIONS = {
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct",
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct",
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
}
# Global variables for model and processor
model = None
processor = None
# Function to load the selected model
def load_model(model_name):
global model, processor
model_id = MODEL_OPTIONS[model_name]
print(f"Loading model: {model_id}")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
print(f"Model {model_id} loaded successfully!")
return f"Model {model_name} loaded!"
@spaces.GPU
def model_inference(input_dict, history, model_choice):
global model, processor
# Load the selected model if not already loaded
if model is None or processor is None:
load_model(model_choice)
text = input_dict["text"]
files = input_dict["files"]
# Load images if provided
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
# Validate input
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
return
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
return
# Prepare messages for the model
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
# Apply chat template and process inputs
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up streamer for real-time output
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the output
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# Example inputs
examples = [
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# **Qwen2.5-VL-3B-Instruct**")
# Model selection dropdown
model_choice = gr.Dropdown(
label="Model Selection",
choices=list(MODEL_OPTIONS.keys()),
value="Latex OCR"
)
# Load model button
load_model_btn = gr.Button("Load Model")
load_model_output = gr.Textbox(label="Model Load Status")
# Chat interface
chat_interface = gr.ChatInterface(
fn=model_inference,
description="Interact with the selected Qwen2-VL model.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
additional_inputs=[model_choice] # Pass model_choice as an additional input
)
# Link the load model button to the load_model function
load_model_btn.click(load_model, inputs=model_choice, outputs=load_model_output)
# Launch the demo
demo.launch(debug=True) |