Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -59,7 +59,7 @@ model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 59 |
torch_dtype=torch.float16
|
| 60 |
).to(device).eval()
|
| 61 |
|
| 62 |
-
# Load
|
| 63 |
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
|
| 64 |
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
|
| 65 |
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
@@ -68,7 +68,6 @@ model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
| 68 |
torch_dtype=torch.float16
|
| 69 |
).to(device).eval()
|
| 70 |
|
| 71 |
-
#--------------------------------------------------#
|
| 72 |
# Load SmolDocling-256M-preview
|
| 73 |
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
| 74 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
|
@@ -77,7 +76,6 @@ model_x = AutoModelForVision2Seq.from_pretrained(
|
|
| 77 |
trust_remote_code=True,
|
| 78 |
torch_dtype=torch.float16
|
| 79 |
).to(device).eval()
|
| 80 |
-
#--------------------------------------------------#
|
| 81 |
|
| 82 |
# Preprocessing functions for SmolDocling-256M
|
| 83 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
|
@@ -136,7 +134,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 136 |
# Model selection
|
| 137 |
if model_name == "Nanonets-OCR-s":
|
| 138 |
processor = processor_m
|
| 139 |
-
model =
|
| 140 |
elif model_name == "MonkeyOCR-Recognition":
|
| 141 |
processor = processor_g
|
| 142 |
model = model_g
|
|
@@ -147,11 +145,11 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 147 |
processor = processor_l
|
| 148 |
model = model_l
|
| 149 |
else:
|
| 150 |
-
yield "Invalid model selected."
|
| 151 |
return
|
| 152 |
|
| 153 |
if image is None:
|
| 154 |
-
yield "Please upload an image."
|
| 155 |
return
|
| 156 |
|
| 157 |
# Prepare images as a list (single image for image inference)
|
|
@@ -190,17 +188,15 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 190 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 191 |
thread.start()
|
| 192 |
|
| 193 |
-
# Stream output
|
| 194 |
buffer = ""
|
| 195 |
-
full_output = ""
|
| 196 |
for new_text in streamer:
|
| 197 |
-
full_output += new_text
|
| 198 |
buffer += new_text.replace("<|im_end|>", "")
|
| 199 |
-
yield buffer
|
| 200 |
|
| 201 |
# SmolDocling-256M specific postprocessing
|
| 202 |
if model_name == "SmolDocling-256M-preview":
|
| 203 |
-
cleaned_output =
|
| 204 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 205 |
if "<chart>" in cleaned_output:
|
| 206 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
@@ -208,9 +204,9 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
| 208 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 209 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 210 |
markdown_output = doc.export_to_markdown()
|
| 211 |
-
yield
|
| 212 |
else:
|
| 213 |
-
yield cleaned_output
|
| 214 |
|
| 215 |
@spaces.GPU
|
| 216 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
@@ -234,11 +230,11 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 234 |
processor = processor_l
|
| 235 |
model = model_l
|
| 236 |
else:
|
| 237 |
-
yield "Invalid model selected."
|
| 238 |
return
|
| 239 |
|
| 240 |
if video_path is None:
|
| 241 |
-
yield "Please upload a video."
|
| 242 |
return
|
| 243 |
|
| 244 |
# Extract frames from video
|
|
@@ -278,17 +274,15 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 278 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 279 |
thread.start()
|
| 280 |
|
| 281 |
-
# Stream output
|
| 282 |
buffer = ""
|
| 283 |
-
full_output = ""
|
| 284 |
for new_text in streamer:
|
| 285 |
-
full_output += new_text
|
| 286 |
buffer += new_text.replace("<|im_end|>", "")
|
| 287 |
-
yield buffer
|
| 288 |
|
| 289 |
# SmolDocling-256M specific postprocessing
|
| 290 |
if model_name == "SmolDocling-256M-preview":
|
| 291 |
-
cleaned_output =
|
| 292 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 293 |
if "<chart>" in cleaned_output:
|
| 294 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
@@ -296,9 +290,9 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
| 296 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 297 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 298 |
markdown_output = doc.export_to_markdown()
|
| 299 |
-
yield
|
| 300 |
else:
|
| 301 |
-
yield cleaned_output
|
| 302 |
|
| 303 |
# Define examples for image and video inference
|
| 304 |
image_examples = [
|
|
@@ -316,6 +310,7 @@ video_examples = [
|
|
| 316 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 317 |
]
|
| 318 |
|
|
|
|
| 319 |
css = """
|
| 320 |
.submit-btn {
|
| 321 |
background-color: #2980b9 !important;
|
|
@@ -328,6 +323,7 @@ css = """
|
|
| 328 |
border: 2px solid #4682B4;
|
| 329 |
border-radius: 10px;
|
| 330 |
padding: 20px;
|
|
|
|
| 331 |
"""
|
| 332 |
|
| 333 |
# Create the Gradio Interface
|
|
@@ -358,37 +354,36 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
| 358 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 359 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 360 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 361 |
-
|
| 362 |
with gr.Column():
|
|
|
|
| 363 |
with gr.Column(elem_classes="canvas-output"):
|
| 364 |
-
gr.Markdown("## Result
|
| 365 |
-
|
| 366 |
-
|
| 367 |
|
| 368 |
model_choice = gr.Radio(
|
| 369 |
-
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "
|
| 370 |
label="Select Model",
|
| 371 |
value="Nanonets-OCR-s"
|
| 372 |
)
|
| 373 |
|
| 374 |
-
gr.Markdown("**Model Info 💻**
|
| 375 |
-
|
| 376 |
gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
|
| 377 |
gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 378 |
gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
|
| 379 |
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 380 |
-
|
| 381 |
-
|
| 382 |
image_submit.click(
|
| 383 |
fn=generate_image,
|
| 384 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 385 |
-
outputs=[
|
| 386 |
)
|
| 387 |
video_submit.click(
|
| 388 |
fn=generate_video,
|
| 389 |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 390 |
-
outputs=[
|
| 391 |
)
|
| 392 |
|
| 393 |
if __name__ == "__main__":
|
| 394 |
-
demo.queue(max_size=
|
|
|
|
| 59 |
torch_dtype=torch.float16
|
| 60 |
).to(device).eval()
|
| 61 |
|
| 62 |
+
# Load Typhoon-OCR-7B
|
| 63 |
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
|
| 64 |
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
|
| 65 |
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
|
| 68 |
torch_dtype=torch.float16
|
| 69 |
).to(device).eval()
|
| 70 |
|
|
|
|
| 71 |
# Load SmolDocling-256M-preview
|
| 72 |
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
|
| 73 |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
|
|
|
| 76 |
trust_remote_code=True,
|
| 77 |
torch_dtype=torch.float16
|
| 78 |
).to(device).eval()
|
|
|
|
| 79 |
|
| 80 |
# Preprocessing functions for SmolDocling-256M
|
| 81 |
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
|
|
|
|
| 134 |
# Model selection
|
| 135 |
if model_name == "Nanonets-OCR-s":
|
| 136 |
processor = processor_m
|
| 137 |
+
model = model ExpressionError
|
| 138 |
elif model_name == "MonkeyOCR-Recognition":
|
| 139 |
processor = processor_g
|
| 140 |
model = model_g
|
|
|
|
| 145 |
processor = processor_l
|
| 146 |
model = model_l
|
| 147 |
else:
|
| 148 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 149 |
return
|
| 150 |
|
| 151 |
if image is None:
|
| 152 |
+
yield "Please upload an image.", "Please upload an image."
|
| 153 |
return
|
| 154 |
|
| 155 |
# Prepare images as a list (single image for image inference)
|
|
|
|
| 188 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 189 |
thread.start()
|
| 190 |
|
| 191 |
+
# Stream output
|
| 192 |
buffer = ""
|
|
|
|
| 193 |
for new_text in streamer:
|
|
|
|
| 194 |
buffer += new_text.replace("<|im_end|>", "")
|
| 195 |
+
yield buffer, buffer
|
| 196 |
|
| 197 |
# SmolDocling-256M specific postprocessing
|
| 198 |
if model_name == "SmolDocling-256M-preview":
|
| 199 |
+
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 200 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 201 |
if "<chart>" in cleaned_output:
|
| 202 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
|
|
| 204 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 205 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 206 |
markdown_output = doc.export_to_markdown()
|
| 207 |
+
yield buffer, markdown_output
|
| 208 |
else:
|
| 209 |
+
yield buffer, cleaned_output
|
| 210 |
|
| 211 |
@spaces.GPU
|
| 212 |
def generate_video(model_name: str, text: str, video_path: str,
|
|
|
|
| 230 |
processor = processor_l
|
| 231 |
model = model_l
|
| 232 |
else:
|
| 233 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 234 |
return
|
| 235 |
|
| 236 |
if video_path is None:
|
| 237 |
+
yield "Please upload a video.", "Please upload a video."
|
| 238 |
return
|
| 239 |
|
| 240 |
# Extract frames from video
|
|
|
|
| 274 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 275 |
thread.start()
|
| 276 |
|
| 277 |
+
# Stream output
|
| 278 |
buffer = ""
|
|
|
|
| 279 |
for new_text in streamer:
|
|
|
|
| 280 |
buffer += new_text.replace("<|im_end|>", "")
|
| 281 |
+
yield buffer, buffer
|
| 282 |
|
| 283 |
# SmolDocling-256M specific postprocessing
|
| 284 |
if model_name == "SmolDocling-256M-preview":
|
| 285 |
+
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
|
| 286 |
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
|
| 287 |
if "<chart>" in cleaned_output:
|
| 288 |
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
|
|
|
|
| 290 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
|
| 291 |
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
|
| 292 |
markdown_output = doc.export_to_markdown()
|
| 293 |
+
yield buffer, markdown_output
|
| 294 |
else:
|
| 295 |
+
yield buffer, cleaned_output
|
| 296 |
|
| 297 |
# Define examples for image and video inference
|
| 298 |
image_examples = [
|
|
|
|
| 310 |
["Explain the video in detail.", "videos/2.mp4"]
|
| 311 |
]
|
| 312 |
|
| 313 |
+
# Updated CSS to include styling for the Result Canvas
|
| 314 |
css = """
|
| 315 |
.submit-btn {
|
| 316 |
background-color: #2980b9 !important;
|
|
|
|
| 323 |
border: 2px solid #4682B4;
|
| 324 |
border-radius: 10px;
|
| 325 |
padding: 20px;
|
| 326 |
+
}
|
| 327 |
"""
|
| 328 |
|
| 329 |
# Create the Gradio Interface
|
|
|
|
| 354 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 355 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 356 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
|
|
|
| 357 |
with gr.Column():
|
| 358 |
+
# Result Canvas with raw and formatted outputs
|
| 359 |
with gr.Column(elem_classes="canvas-output"):
|
| 360 |
+
gr.Markdown("## Result Canvas")
|
| 361 |
+
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
|
| 362 |
+
formatted_output = gr.Markdown(label="Formatted Result (Result.Md)")
|
| 363 |
|
| 364 |
model_choice = gr.Radio(
|
| 365 |
+
choices=["SmolDocling-256M-preview", "Nanonets-OCR-s", "MonkeyOCR-Recognition", "Typhoon-OCR-7B"],
|
| 366 |
label="Select Model",
|
| 367 |
value="Nanonets-OCR-s"
|
| 368 |
)
|
| 369 |
|
| 370 |
+
gr.Markdown("**Model Info 💻**")
|
|
|
|
| 371 |
gr.Markdown("> [SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview): SmolDocling is a multimodal Image-Text-to-Text model designed for efficient document conversion. It retains Docling's most popular features while ensuring full compatibility with Docling through seamless support for DoclingDocuments.")
|
| 372 |
gr.Markdown("> [Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s): nanonets-ocr-s is a powerful, state-of-the-art image-to-markdown ocr model that goes far beyond traditional text extraction. it transforms documents into structured markdown with intelligent content recognition and semantic tagging.")
|
| 373 |
gr.Markdown("> [MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR): MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
|
| 374 |
gr.Markdown("> [Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b): A bilingual document parsing model built specifically for real-world documents in Thai and English inspired by models like olmOCR based on Qwen2.5-VL-Instruction. Extracts and interprets embedded text (e.g., chart labels, captions) in Thai or English.")
|
| 375 |
+
|
| 376 |
+
# Connect submit buttons to generation functions with both outputs
|
| 377 |
image_submit.click(
|
| 378 |
fn=generate_image,
|
| 379 |
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 380 |
+
outputs=[raw_output, formatted_output]
|
| 381 |
)
|
| 382 |
video_submit.click(
|
| 383 |
fn=generate_video,
|
| 384 |
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 385 |
+
outputs=[raw_output, formatted_output]
|
| 386 |
)
|
| 387 |
|
| 388 |
if __name__ == "__main__":
|
| 389 |
+
demo.queue(max_size=40).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|