prithivMLmods commited on
Commit
7a60f0d
·
verified ·
1 Parent(s): 65f3e50

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -50
app.py CHANGED
@@ -32,11 +32,14 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
32
 
33
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
34
 
35
- # --- Original Models ---
 
 
 
36
 
37
  # Load DREX-062225-exp
38
  MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
39
- processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
40
  model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
41
  MODEL_ID_X,
42
  trust_remote_code=True,
@@ -45,7 +48,7 @@ model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
45
 
46
  # Load typhoon-ocr-3b
47
  MODEL_ID_T = "scb10x/typhoon-ocr-3b"
48
- processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
49
  model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
50
  MODEL_ID_T,
51
  trust_remote_code=True,
@@ -54,7 +57,7 @@ model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
54
 
55
  # Load olmOCR-7B-0225-preview
56
  MODEL_ID_O = "allenai/olmOCR-7B-0225-preview"
57
- processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True)
58
  model_o = Qwen2VLForConditionalGeneration.from_pretrained(
59
  MODEL_ID_O,
60
  trust_remote_code=True,
@@ -64,7 +67,7 @@ model_o = Qwen2VLForConditionalGeneration.from_pretrained(
64
  # Load Lumian-VLR-7B-Thinking
65
  MODEL_ID_J = "prithivMLmods/Lumian-VLR-7B-Thinking"
66
  SUBFOLDER = "think-preview"
67
- processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True, subfolder=SUBFOLDER)
68
  model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
69
  MODEL_ID_J,
70
  trust_remote_code=True,
@@ -72,7 +75,7 @@ model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
72
  torch_dtype=torch.float16
73
  ).to(device).eval()
74
 
75
- # --- Load New Model: openbmb/MiniCPM-V-4 ---
76
  MODEL_ID_V4 = 'openbmb/MiniCPM-V-4'
77
  model_v4 = AutoModel.from_pretrained(
78
  MODEL_ID_V4,
@@ -80,7 +83,16 @@ model_v4 = AutoModel.from_pretrained(
80
  torch_dtype=torch.bfloat16,
81
  attn_implementation='sdpa'
82
  ).eval().to(device)
83
- tokenizer_v4 = AutoTokenizer.from_pretrained(MODEL_ID_V4, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
84
 
85
 
86
  def downsample_video(video_path):
@@ -119,36 +131,25 @@ def generate_image(model_name: str, text: str, image: Image.Image,
119
  yield "Please upload an image.", "Please upload an image."
120
  return
121
 
122
- # Handle the new model separately due to its different API
123
  if model_name == "openbmb/MiniCPM-V-4":
124
  msgs = [{'role': 'user', 'content': [image, text]}]
125
  try:
126
  answer = model_v4.chat(
127
- image=image.convert('RGB'),
128
- msgs=msgs,
129
- tokenizer=tokenizer_v4,
130
- max_new_tokens=max_new_tokens,
131
- temperature=temperature,
132
- top_p=top_p,
133
- repetition_penalty=repetition_penalty,
134
  )
135
  yield answer, answer
136
  except Exception as e:
137
  yield f"Error: {e}", f"Error: {e}"
138
  return
139
 
140
- # Original model selection logic
141
- if model_name == "DREX-062225-7B-exp":
142
- processor, model = processor_x, model_x
143
- elif model_name == "olmOCR-7B-0225-preview":
144
- processor, model = processor_o, model_o
145
- elif model_name == "Typhoon-OCR":
146
- processor, model = processor_t, model_t
147
- elif model_name == "Lumian-VLR-7B-Thinking":
148
- processor, model = processor_j, model_j
149
- else:
150
  yield "Invalid model selected.", "Invalid model selected."
151
  return
 
152
 
153
  messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]}]
154
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
@@ -185,46 +186,38 @@ def generate_video(model_name: str, text: str, video_path: str,
185
  yield "Could not process video.", "Could not process video."
186
  return
187
 
188
- # Handle the new model separately
189
  if model_name == "openbmb/MiniCPM-V-4":
190
  images = [frame for frame, ts in frames_with_ts]
 
191
  content = [text] + images
192
  msgs = [{'role': 'user', 'content': content}]
193
  try:
 
194
  answer = model_v4.chat(
195
- image=images[0].convert('RGB'),
196
- msgs=msgs,
197
- tokenizer=tokenizer_v4,
198
- max_new_tokens=max_new_tokens,
199
- temperature=temperature,
200
- top_p=top_p,
201
- repetition_penalty=repetition_penalty,
202
  )
203
  yield answer, answer
204
  except Exception as e:
205
  yield f"Error: {e}", f"Error: {e}"
206
  return
207
 
208
- # Original model selection logic
209
- if model_name == "DREX-062225-7B-exp":
210
- processor, model = processor_x, model_x
211
- elif model_name == "olmOCR-7B-0225-preview":
212
- processor, model = processor_o, model_o
213
- elif model_name == "Typhoon-OCR":
214
- processor, model = processor_t, model_t
215
- elif model_name == "Lumian-VLR-7B-Thinking":
216
- processor, model = processor_j, model_j
217
- else:
218
  yield "Invalid model selected.", "Invalid model selected."
219
  return
 
220
 
221
  # Prepare messages for Qwen-style models
222
  messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
 
223
  for frame, timestamp in frames_with_ts:
224
  messages[0]["content"].append({"type": "image", "image": frame})
 
225
 
226
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
227
- images_for_processor = [frame for frame, ts in frames_with_ts]
228
  inputs = processor(
229
  text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True,
230
  truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
@@ -260,7 +253,6 @@ video_examples = [
260
  ["Explain the ad in detail.", "videos/1.mp4"]
261
  ]
262
 
263
- # Added CSS to style the output area as a "Canvas"
264
  css = """
265
  .submit-btn { background-color: #2980b9 !important; color: white !important; }
266
  .submit-btn:hover { background-color: #3498db !important; }
@@ -298,14 +290,16 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
298
  with gr.Accordion("(Result.md)", open=False):
299
  markdown_output = gr.Markdown(label="(Result.Md)")
300
  model_choice = gr.Radio(
301
- choices=[ "openbmb/MiniCPM-V-4", "Lumian-VLR-7B-Thinking", "Typhoon-OCR", "DREX-062225-7B-exp", "olmOCR-7B-0225-preview"],
302
  label="Select Model",
303
  value="openbmb/MiniCPM-V-4"
304
  )
305
  gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-Thinking/discussions)")
306
- gr.Markdown("> MiniCPM-V 4.0 is the latest efficient model in the MiniCPM-V series. The model is built based on SigLIP2-400M and MiniCPM4-3B with a total of 4.1B parameters. It inherits the strong single-image, multi-image and video understanding performance of MiniCPM-V 2.6 with largely improved efficiency. Lumian-VLR-7B-Thinking is a high-fidelity vision-language reasoning model built on Qwen2.5-VL-7B-Instruct, designed for fine-grained multimodal understanding, video reasoning, and document comprehension through explicit grounded reasoning.")
307
- gr.Markdown("> olmOCR-7B-0225-preview is a 7B parameter open large model designed for OCR tasks with robust text extraction, especially in complex document layouts. Typhoon-ocr-3b is a 3B parameter OCR model optimized for efficient and accurate optical character recognition in challenging conditions.")
308
- gr.Markdown("> DREX-062225-exp is an experimental multimodal model emphasizing strong document reading and extraction capabilities combined with vision-language understanding to support detailed document parsing and reasoning tasks.")
 
 
309
  gr.Markdown("> ⚠️ Note: Video inference performance can vary significantly between models.")
310
 
311
  image_submit.click(
@@ -320,4 +314,4 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
320
  )
321
 
322
  if __name__ == "__main__":
323
- demo.queue(max_size=50).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
 
32
 
33
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
34
 
35
+ # --- Model Loading ---
36
+
37
+ # To address the warnings, we add `use_fast=False` to ensure we use the
38
+ # processor version the model was originally saved with.
39
 
40
  # Load DREX-062225-exp
41
  MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
42
+ processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False)
43
  model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
44
  MODEL_ID_X,
45
  trust_remote_code=True,
 
48
 
49
  # Load typhoon-ocr-3b
50
  MODEL_ID_T = "scb10x/typhoon-ocr-3b"
51
+ processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True, use_fast=False)
52
  model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
53
  MODEL_ID_T,
54
  trust_remote_code=True,
 
57
 
58
  # Load olmOCR-7B-0225-preview
59
  MODEL_ID_O = "allenai/olmOCR-7B-0225-preview"
60
+ processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True, use_fast=False)
61
  model_o = Qwen2VLForConditionalGeneration.from_pretrained(
62
  MODEL_ID_O,
63
  trust_remote_code=True,
 
67
  # Load Lumian-VLR-7B-Thinking
68
  MODEL_ID_J = "prithivMLmods/Lumian-VLR-7B-Thinking"
69
  SUBFOLDER = "think-preview"
70
+ processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True, subfolder=SUBFOLDER, use_fast=False)
71
  model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
72
  MODEL_ID_J,
73
  trust_remote_code=True,
 
75
  torch_dtype=torch.float16
76
  ).to(device).eval()
77
 
78
+ # Load openbmb/MiniCPM-V-4
79
  MODEL_ID_V4 = 'openbmb/MiniCPM-V-4'
80
  model_v4 = AutoModel.from_pretrained(
81
  MODEL_ID_V4,
 
83
  torch_dtype=torch.bfloat16,
84
  attn_implementation='sdpa'
85
  ).eval().to(device)
86
+ tokenizer_v4 = AutoTokenizer.from_pretrained(MODEL_ID_V4, trust_remote_code=True, use_fast=False)
87
+
88
+ # --- Refactored Model Dictionary ---
89
+ # This simplifies model selection in the generation functions.
90
+ MODELS = {
91
+ "DREX-062225-7B-exp": (processor_x, model_x),
92
+ "Typhoon-OCR-3B": (processor_t, model_t),
93
+ "olmOCR-7B-0225-preview": (processor_o, model_o),
94
+ "Lumian-VLR-7B-Thinking": (processor_j, model_j),
95
+ }
96
 
97
 
98
  def downsample_video(video_path):
 
131
  yield "Please upload an image.", "Please upload an image."
132
  return
133
 
134
+ # Handle MiniCPM-V-4 separately due to its different API
135
  if model_name == "openbmb/MiniCPM-V-4":
136
  msgs = [{'role': 'user', 'content': [image, text]}]
137
  try:
138
  answer = model_v4.chat(
139
+ image=image.convert('RGB'), msgs=msgs, tokenizer=tokenizer_v4,
140
+ max_new_tokens=max_new_tokens, temperature=temperature,
141
+ top_p=top_p, repetition_penalty=repetition_penalty,
 
 
 
 
142
  )
143
  yield answer, answer
144
  except Exception as e:
145
  yield f"Error: {e}", f"Error: {e}"
146
  return
147
 
148
+ # Use the dictionary for other models
149
+ if model_name not in MODELS:
 
 
 
 
 
 
 
 
150
  yield "Invalid model selected.", "Invalid model selected."
151
  return
152
+ processor, model = MODELS[model_name]
153
 
154
  messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]}]
155
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 
186
  yield "Could not process video.", "Could not process video."
187
  return
188
 
189
+ # Handle MiniCPM-V-4 separately
190
  if model_name == "openbmb/MiniCPM-V-4":
191
  images = [frame for frame, ts in frames_with_ts]
192
+ # For video, the prompt includes the text and then all the image frames
193
  content = [text] + images
194
  msgs = [{'role': 'user', 'content': content}]
195
  try:
196
+ # The .chat API still takes a single image argument, typically the first frame
197
  answer = model_v4.chat(
198
+ image=images[0].convert('RGB'), msgs=msgs, tokenizer=tokenizer_v4,
199
+ max_new_tokens=max_new_tokens, temperature=temperature,
200
+ top_p=top_p, repetition_penalty=repetition_penalty,
 
 
 
 
201
  )
202
  yield answer, answer
203
  except Exception as e:
204
  yield f"Error: {e}", f"Error: {e}"
205
  return
206
 
207
+ # Use the dictionary for other models
208
+ if model_name not in MODELS:
 
 
 
 
 
 
 
 
209
  yield "Invalid model selected.", "Invalid model selected."
210
  return
211
+ processor, model = MODELS[model_name]
212
 
213
  # Prepare messages for Qwen-style models
214
  messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
215
+ images_for_processor = []
216
  for frame, timestamp in frames_with_ts:
217
  messages[0]["content"].append({"type": "image", "image": frame})
218
+ images_for_processor.append(frame)
219
 
220
  prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 
221
  inputs = processor(
222
  text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True,
223
  truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
 
253
  ["Explain the ad in detail.", "videos/1.mp4"]
254
  ]
255
 
 
256
  css = """
257
  .submit-btn { background-color: #2980b9 !important; color: white !important; }
258
  .submit-btn:hover { background-color: #3498db !important; }
 
290
  with gr.Accordion("(Result.md)", open=False):
291
  markdown_output = gr.Markdown(label="(Result.Md)")
292
  model_choice = gr.Radio(
293
+ choices=["openbmb/MiniCPM-V-4", "Lumian-VLR-7B-Thinking", "Typhoon-OCR-3B", "DREX-062225-7B-exp", "olmOCR-7B-0225-preview"],
294
  label="Select Model",
295
  value="openbmb/MiniCPM-V-4"
296
  )
297
  gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-Thinking/discussions)")
298
+ gr.Markdown("> **MiniCPM-V 4.0** is an efficient open-source multimodal model with strong performance in single/multi-image and video understanding, inheriting and improving upon the MiniCPM-V series.")
299
+ gr.Markdown("> **Lumian-VLR-7B-Thinking** is a high-fidelity vision-language reasoning model for fine-grained multimodal understanding, video reasoning, and document comprehension.")
300
+ gr.Markdown("> **olmOCR-7B-0225-preview** is a 7B parameter model designed for robust text extraction in complex OCR tasks.")
301
+ gr.Markdown("> **Typhoon-OCR-3B** is a 3B parameter OCR model optimized for efficient and accurate character recognition.")
302
+ gr.Markdown("> **DREX-062225-exp** is an experimental model emphasizing strong document reading, extraction, and vision-language understanding.")
303
  gr.Markdown("> ⚠️ Note: Video inference performance can vary significantly between models.")
304
 
305
  image_submit.click(
 
314
  )
315
 
316
  if __name__ == "__main__":
317
+ demo.queue(max_size=50).launch(share=True, show_error=True)