Multimodal-VLMs / app.py
prithivMLmods's picture
upload files
3c78324 verified
raw
history blame
18.4 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from pdf2image import convert_from_path
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Vision-Matters-7B
MODEL_ID_M = "Yuting6/Vision-Matters-7B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load ViGaL-7B
MODEL_ID_X = "yunfeixie/ViGaL-7B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load R1-Onevision-7B
MODEL_ID_T = "FriendliAI/R1-Onevision-7B"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load Visionary-R1
MODEL_ID_O = "maifoundations/Visionary-R1"
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True)
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_O, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load VLM-R1-Qwen2.5VL-3B-Math-0305
MODEL_ID_W = "omlab/VLM-R1-Qwen2.5VL-3B-Math-0305"
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_W, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Function to downsample video frames
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Function to convert PDF to image
def pdf_to_image(pdf_path):
"""
Converts a single-page PDF to a PIL image.
"""
images = convert_from_path(pdf_path)
if not images:
raise ValueError("Failed to convert PDF to image.")
return images[0] # Return the first page
# Function to generate text responses based on image input
@spaces.GPU
def generate_image(model_name: str,
text: str,
image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Vision-Matters-7B-Math":
processor = processor_m
model = model_m
elif model_name == "ViGaL-7B":
processor = processor_x
model = model_x
elif model_name == "Visionary-R1":
processor = processor_o
model = model_o
elif model_name == "R1-Onevision-7B":
processor = processor_t
model = model_t
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305":
processor = processor_w
model = model_w
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
inputs = processor(text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor,
skip_prompt=True,
skip_special_tokens=True)
generation_kwargs = {
**inputs, "streamer": streamer,
"max_new_tokens": max_new_tokens
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Function to generate text responses based on video input
@spaces.GPU
def generate_video(model_name: str,
text: str,
video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Vision-Matters-7B-Math":
processor = processor_m
model = model_m
elif model_name == "ViGaL-7B":
processor = processor_x
model = model_x
elif model_name == "Visionary-R1":
processor = processor_o
model = model_o
elif model_name == "R1-Onevision-7B":
processor = processor_t
model = model_t
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305":
processor = processor_w
model = model_w
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}]
}, {
"role": "user",
"content": [{"type": "text", "text": text}]
}]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor,
skip_prompt=True,
skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Function to generate text responses based on PDF input
@spaces.GPU
def generate_pdf(model_name: str,
text: str,
pdf_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for single-page PDF input by converting it to an image.
"""
try:
image = pdf_to_image(pdf_path)
except Exception as e:
yield f"Error converting PDF to image: {str(e)}", f"Error converting PDF to image: {str(e)}"
return
yield from generate_image(model_name, text, image, max_new_tokens, temperature, top_p, top_k, repetition_penalty)
# Function to save the output text to a Markdown file
def save_to_md(output_text):
"""
Saves the output text to a Markdown file and returns the file path for download.
"""
file_path = f"result_{uuid.uuid4()}.md"
with open(file_path, "w") as f:
f.write(output_text)
return file_path
# Define examples for image, video, and PDF inference
image_examples = [
["Solve the problem to find the value.", "images/1.jpg"],
["Explain the scene.", "images/6.jpg"],
["Solve the problem step by step.", "images/2.jpg"],
["Find the value of 'X'.", "images/3.jpg"],
["Simplify the expression.", "images/4.jpg"],
["Solve for the value.", "images/5.png"]
]
video_examples = [
["Explain the video in detail.", "videos/1.mp4"],
["Explain the video in detail.", "videos/2.mp4"]
]
pdf_examples = [
["Explain the content briefly.", "pdfs/1.pdf"],
["What is the content about?", "pdfs/2.pdf"]
]
# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(
"# **[Multimodal VLMs 5x](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**"
)
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(
label="Query Input",
placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit",
elem_classes="submit-btn")
gr.Examples(examples=image_examples,
inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(
label="Query Input",
placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit",
elem_classes="submit-btn")
gr.Examples(examples=video_examples,
inputs=[video_query, video_upload])
with gr.TabItem("Single Page PDF Inference"):
pdf_query = gr.Textbox(
label="Query Input",
placeholder="Enter your query here...")
pdf_upload = gr.File(label="PDF", type="filepath")
pdf_submit = gr.Button("Submit",
elem_classes="submit-btn")
gr.Examples(examples=pdf_examples,
inputs=[pdf_query, pdf_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9)
top_k = gr.Slider(label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50)
repetition_penalty = gr.Slider(label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Result.Md")
output = gr.Textbox(label="Raw Output Stream",
interactive=False,
lines=2)
with gr.Accordion("Formatted Result (Result.md)", open=False):
markdown_output = gr.Markdown(
label="Formatted Result (Result.Md)")
#download_btn = gr.Button("Download Result.md")
model_choice = gr.Radio(choices=[
"Vision-Matters-7B-Math", "ViGaL-7B", "Visionary-R1",
"R1-Onevision-7B", "VLM-R1-Qwen2.5VL-3B-Math-0305"
],
label="Select Model",
value="Vision-Matters-7B-Math")
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)")
gr.Markdown("> [Vision Matters 7B Math](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.")
gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.")
gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.")
gr.Markdown("> [R1-Onevision-7B](https://huggingface.co/Fancy-MLLM/R1-Onevision-7B): r1-onevision model enhances vision-language understanding and reasoning capabilities, making it suitable for various tasks such as visual reasoning and image understanding. with its robust ability to perform multimodal reasoning, r1-onevision emerges as a powerful ai assistant capable of addressing different domains.")
gr.Markdown("> [VLM-R1-Qwen2.5VL-3B-Math-0305](https://huggingface.co/omlab/VLM-R1-Qwen2.5VL-3B-Math-0305): vlm-r1 is a framework designed to enhance the reasoning and generalization capabilities of vision-language models (vlms) using a reinforcement learning (rl) approach inspired by the r1 methodology originally developed for large language models.")
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
# Define the submit button actions
image_submit.click(fn=generate_image,
inputs=[
model_choice, image_query, image_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[
model_choice, video_query, video_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
pdf_submit.click(fn=generate_pdf,
inputs=[
model_choice, pdf_query, pdf_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
# Uncomment the following lines to enable download functionality(ps:no needed for now)
#download_btn.click(
# fn=save_to_md,
# inputs=output,
# outputs=None
#)
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)