Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
from transformers.image_utils import load_image | |
from pdf2image import convert_from_path | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load Vision-Matters-7B | |
MODEL_ID_M = "Yuting6/Vision-Matters-7B" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load ViGaL-7B | |
MODEL_ID_X = "yunfeixie/ViGaL-7B" | |
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True) | |
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_X, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load R1-Onevision-7B | |
MODEL_ID_T = "FriendliAI/R1-Onevision-7B" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load Visionary-R1 | |
MODEL_ID_O = "maifoundations/Visionary-R1" | |
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True) | |
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_O, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Load VLM-R1-Qwen2.5VL-3B-Math-0305 | |
MODEL_ID_W = "omlab/VLM-R1-Qwen2.5VL-3B-Math-0305" | |
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True) | |
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_W, trust_remote_code=True, | |
torch_dtype=torch.float16).to(device).eval() | |
# Function to downsample video frames | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
# Function to convert PDF to image | |
def pdf_to_image(pdf_path): | |
""" | |
Converts a single-page PDF to a PIL image. | |
""" | |
images = convert_from_path(pdf_path) | |
if not images: | |
raise ValueError("Failed to convert PDF to image.") | |
return images[0] # Return the first page | |
# Function to generate text responses based on image input | |
def generate_image(model_name: str, | |
text: str, | |
image: Image.Image, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for image input. | |
""" | |
if model_name == "Vision-Matters-7B-Math": | |
processor = processor_m | |
model = model_m | |
elif model_name == "ViGaL-7B": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Visionary-R1": | |
processor = processor_o | |
model = model_o | |
elif model_name == "R1-Onevision-7B": | |
processor = processor_t | |
model = model_t | |
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305": | |
processor = processor_w | |
model = model_w | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if image is None: | |
yield "Please upload an image.", "Please upload an image." | |
return | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, | |
tokenize=False, | |
add_generation_prompt=True) | |
inputs = processor(text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
streamer = TextIteratorStreamer(processor, | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, "streamer": streamer, | |
"max_new_tokens": max_new_tokens | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Function to generate text responses based on video input | |
def generate_video(model_name: str, | |
text: str, | |
video_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for video input. | |
""" | |
if model_name == "Vision-Matters-7B-Math": | |
processor = processor_m | |
model = model_m | |
elif model_name == "ViGaL-7B": | |
processor = processor_x | |
model = model_x | |
elif model_name == "Visionary-R1": | |
processor = processor_o | |
model = model_o | |
elif model_name == "R1-Onevision-7B": | |
processor = processor_t | |
model = model_t | |
elif model_name == "VLM-R1-Qwen2.5VL-3B-Math-0305": | |
processor = processor_w | |
model = model_w | |
else: | |
yield "Invalid model selected.", "Invalid model selected." | |
return | |
if video_path is None: | |
yield "Please upload a video.", "Please upload a video." | |
return | |
frames = downsample_video(video_path) | |
messages = [{ | |
"role": "system", | |
"content": [{"type": "text", "text": "You are a helpful assistant."}] | |
}, { | |
"role": "user", | |
"content": [{"type": "text", "text": text}] | |
}] | |
for frame in frames: | |
image, timestamp = frame | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "image": image}) | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=False, | |
max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
streamer = TextIteratorStreamer(processor, | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer, buffer | |
# Function to generate text responses based on PDF input | |
def generate_pdf(model_name: str, | |
text: str, | |
pdf_path: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates responses using the selected model for single-page PDF input by converting it to an image. | |
""" | |
try: | |
image = pdf_to_image(pdf_path) | |
except Exception as e: | |
yield f"Error converting PDF to image: {str(e)}", f"Error converting PDF to image: {str(e)}" | |
return | |
yield from generate_image(model_name, text, image, max_new_tokens, temperature, top_p, top_k, repetition_penalty) | |
# Function to save the output text to a Markdown file | |
def save_to_md(output_text): | |
""" | |
Saves the output text to a Markdown file and returns the file path for download. | |
""" | |
file_path = f"result_{uuid.uuid4()}.md" | |
with open(file_path, "w") as f: | |
f.write(output_text) | |
return file_path | |
# Define examples for image, video, and PDF inference | |
image_examples = [ | |
["Solve the problem to find the value.", "images/1.jpg"], | |
["Explain the scene.", "images/6.jpg"], | |
["Solve the problem step by step.", "images/2.jpg"], | |
["Find the value of 'X'.", "images/3.jpg"], | |
["Simplify the expression.", "images/4.jpg"], | |
["Solve for the value.", "images/5.png"] | |
] | |
video_examples = [ | |
["Explain the video in detail.", "videos/1.mp4"], | |
["Explain the video in detail.", "videos/2.mp4"] | |
] | |
pdf_examples = [ | |
["Explain the content briefly.", "pdfs/1.pdf"], | |
["What is the content about?", "pdfs/2.pdf"] | |
] | |
# Added CSS to style the output area as a "Canvas" | |
css = """ | |
.submit-btn { | |
background-color: #2980b9 !important; | |
color: white !important; | |
} | |
.submit-btn:hover { | |
background-color: #3498db !important; | |
} | |
.canvas-output { | |
border: 2px solid #4682B4; | |
border-radius: 10px; | |
padding: 20px; | |
} | |
""" | |
# Create the Gradio Interface | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown( | |
"# **[Multimodal VLMs 5x](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs(): | |
with gr.TabItem("Image Inference"): | |
image_query = gr.Textbox( | |
label="Query Input", | |
placeholder="Enter your query here...") | |
image_upload = gr.Image(type="pil", label="Image") | |
image_submit = gr.Button("Submit", | |
elem_classes="submit-btn") | |
gr.Examples(examples=image_examples, | |
inputs=[image_query, image_upload]) | |
with gr.TabItem("Video Inference"): | |
video_query = gr.Textbox( | |
label="Query Input", | |
placeholder="Enter your query here...") | |
video_upload = gr.Video(label="Video") | |
video_submit = gr.Button("Submit", | |
elem_classes="submit-btn") | |
gr.Examples(examples=video_examples, | |
inputs=[video_query, video_upload]) | |
with gr.TabItem("Single Page PDF Inference"): | |
pdf_query = gr.Textbox( | |
label="Query Input", | |
placeholder="Enter your query here...") | |
pdf_upload = gr.File(label="PDF", type="filepath") | |
pdf_submit = gr.Button("Submit", | |
elem_classes="submit-btn") | |
gr.Examples(examples=pdf_examples, | |
inputs=[pdf_query, pdf_upload]) | |
with gr.Accordion("Advanced options", open=False): | |
max_new_tokens = gr.Slider(label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS) | |
temperature = gr.Slider(label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6) | |
top_p = gr.Slider(label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9) | |
top_k = gr.Slider(label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50) | |
repetition_penalty = gr.Slider(label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2) | |
with gr.Column(): | |
with gr.Column(elem_classes="canvas-output"): | |
gr.Markdown("## Result.Md") | |
output = gr.Textbox(label="Raw Output Stream", | |
interactive=False, | |
lines=2) | |
with gr.Accordion("Formatted Result (Result.md)", open=False): | |
markdown_output = gr.Markdown( | |
label="Formatted Result (Result.Md)") | |
#download_btn = gr.Button("Download Result.md") | |
model_choice = gr.Radio(choices=[ | |
"Vision-Matters-7B-Math", "ViGaL-7B", "Visionary-R1", | |
"R1-Onevision-7B", "VLM-R1-Qwen2.5VL-3B-Math-0305" | |
], | |
label="Select Model", | |
value="Vision-Matters-7B-Math") | |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)") | |
gr.Markdown("> [Vision Matters 7B Math](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.") | |
gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.") | |
gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.") | |
gr.Markdown("> [R1-Onevision-7B](https://huggingface.co/Fancy-MLLM/R1-Onevision-7B): r1-onevision model enhances vision-language understanding and reasoning capabilities, making it suitable for various tasks such as visual reasoning and image understanding. with its robust ability to perform multimodal reasoning, r1-onevision emerges as a powerful ai assistant capable of addressing different domains.") | |
gr.Markdown("> [VLM-R1-Qwen2.5VL-3B-Math-0305](https://huggingface.co/omlab/VLM-R1-Qwen2.5VL-3B-Math-0305): vlm-r1 is a framework designed to enhance the reasoning and generalization capabilities of vision-language models (vlms) using a reinforcement learning (rl) approach inspired by the r1 methodology originally developed for large language models.") | |
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.") | |
# Define the submit button actions | |
image_submit.click(fn=generate_image, | |
inputs=[ | |
model_choice, image_query, image_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
video_submit.click(fn=generate_video, | |
inputs=[ | |
model_choice, video_query, video_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
pdf_submit.click(fn=generate_pdf, | |
inputs=[ | |
model_choice, pdf_query, pdf_upload, | |
max_new_tokens, temperature, top_p, top_k, | |
repetition_penalty | |
], | |
outputs=[output, markdown_output]) | |
# Uncomment the following lines to enable download functionality(ps:no needed for now) | |
#download_btn.click( | |
# fn=save_to_md, | |
# inputs=output, | |
# outputs=None | |
#) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |