Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,856 Bytes
6583df1 39d517d 6583df1 9dad1b4 6583df1 39d517d 6583df1 22e4c03 6583df1 85d529e 6583df1 39d517d 6583df1 39d517d 68eb731 39d517d 6583df1 9dad1b4 6583df1 39d517d 6583df1 22e4c03 6583df1 39d517d 6583df1 68eb731 39d517d 6583df1 9dad1b4 6583df1 39d517d 6583df1 22e4c03 6583df1 39d517d 6583df1 68eb731 39d517d 6583df1 9932c07 42064ed 9932c07 42064ed 9932c07 6583df1 1a4cca8 6583df1 39d517d 6583df1 a11c817 c8ef24f a783606 6583df1 f8c343f 0ed0cc1 1a4cca8 0ed0cc1 bf5a39c a783606 6583df1 2497cdf 6583df1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModelForCausalLM,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Camel-Doc-OCR-080125
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load OCRFlux-3B
MODEL_ID_X = "ChatDOC/OCRFlux-3B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load Behemoth-3B-070225
MODEL_ID_T = "prithivMLmods/Behemoth-3B-070225-post0.1"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Load MonkeyOCR-pro-1.2B
MODEL_ID_O = "echo840/MonkeyOCR-pro-1.2B"
SUBFOLDER = "Recognition"
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True, subfolder=SUBFOLDER)
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_O, trust_remote_code=True, subfolder=SUBFOLDER,
torch_dtype=torch.float16).to(device).eval()
# Load ViGoRL-MCTS-SFT-7b-Spatial
MODEL_ID_A = "gsarch/ViGoRL-MCTS-SFT-7b-Spatial"
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
model_a = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_A, trust_remote_code=True,
torch_dtype=torch.float16).to(device).eval()
# Function to downsample video frames
def downsample_video(video_path):
"""
Downsamples the video to evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Function to generate text responses based on image input
@spaces.GPU
def generate_image(model_name: str,
text: str,
image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for image input.
"""
if model_name == "Camel-Doc-OCR-080125(v2)":
processor = processor_m
model = model_m
elif model_name == "OCRFlux-3B":
processor = processor_x
model = model_x
elif model_name == "Behemoth-3B-070225":
processor = processor_o
model = model_o
elif model_name == "MonkeyOCR-pro-1.2B":
processor = processor_t
model = model_t
elif model_name == "ViGoRL-MCTS-SFT-7B":
processor = processor_a
model = model_a
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages,
tokenize=False,
add_generation_prompt=True)
inputs = processor(text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor,
skip_prompt=True,
skip_special_tokens=True)
generation_kwargs = {
**inputs, "streamer": streamer,
"max_new_tokens": max_new_tokens
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
# Function to generate text responses based on video input
@spaces.GPU
def generate_video(model_name: str,
text: str,
video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates responses using the selected model for video input.
"""
if model_name == "Camel-Doc-OCR-080125(v2)":
processor = processor_m
model = model_m
elif model_name == "OCRFlux-3B":
processor = processor_x
model = model_x
elif model_name == "Behemoth-3B-070225":
processor = processor_o
model = model_o
elif model_name == "MonkeyOCR-pro-1.2B":
processor = processor_t
model = model_t
elif model_name == "ViGoRL-MCTS-SFT-7B":
processor = processor_a
model = model_a
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [{
"role": "system",
"content": [{"type": "text", "text": "You are a helpful assistant."}]
}, {
"role": "user",
"content": [{"type": "text", "text": text}]
}]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor,
skip_prompt=True,
skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["Explain the essence of the image.", "assets/images/B.jpg"],
["Extract the content.", "assets/images/1.png"],
["Describe the safety of the action shown in the image.", "assets/images/C.jpg"],
["Caption the image.", "assets/images/A.jpg"],
["Make this into a table for the README.md file.", "assets/images/2.jpg"],
["Extract the table content from the image.", "assets/images/3.png"],
["Perform OCR on the image.", "assets/images/4.jpg"]
]
video_examples = [
["Explain the video in detail.", "assets/videos/a.mp4"],
["Explain the video in detail.", "assets/videos/b.mp4"]
]
#css
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(
"# **[Multimodal OCR Outpost](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**"
)
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(
label="Query Input",
placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit",
elem_classes="submit-btn")
gr.Examples(examples=image_examples,
inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(
label="Query Input",
placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit",
elem_classes="submit-btn")
gr.Examples(examples=video_examples,
inputs=[video_query, video_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9)
top_k = gr.Slider(label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50)
repetition_penalty = gr.Slider(label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output Stream",
interactive=False,
lines=2, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(
label="markup.md")
model_choice = gr.Radio(choices=[
"Camel-Doc-OCR-080125(v2)", "OCRFlux-3B",
"ViGoRL-MCTS-SFT-3B", "Behemoth-3B-070225",
"MonkeyOCR-pro-1.2B"],
label="Select Model",
value="Camel-Doc-OCR-080125(v2)")
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Outpost/discussions)")
gr.Markdown("> Camel-Doc-OCR-080125 is a specialized vision-language model, fine-tuned from Qwen2.5-VL-7B-Instruct, and excels at document retrieval, content extraction, and analysis recognition for both structured and unstructured digital documents. OCRFlux-3B is a 3B-parameter vision-language model optimized for high-quality OCR on PDFs and images, excelling in converting documents to clean Markdown text and supporting features like cross-page table/paragraph merging.")
gr.Markdown("> Both ViGoRL-MCTS-SFT-3b-Spatial and 7b-Spatial are vision-language models that use multi-turn visually grounded reinforcement learning for precise spatial reasoning and visual grounding, with the 3b and 7b variants differing mainly in their architectural size for fine-grained visual tasks.")
gr.Markdown("> Behemoth-3B-070225-post0.1 is an advanced 3B parameter model tailored for extensive multimodal comprehension, document parsing, and possibly generalized OCR/vision-language tasks. MonkeyOCR-pro-1.2B is a lightweight OCR model focusing on high-accuracy text extraction from images and scanned documents, suitable for resource-constrained environments.")
gr.Markdown("> ⚠️ Note: Models in this space may not perform well on video inference tasks.")
# Define the submit button actions
image_submit.click(fn=generate_image,
inputs=[
model_choice, image_query, image_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[
model_choice, video_query, video_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |