File size: 14,121 Bytes
892d31d
0c8e12c
892d31d
 
0c8e12c
 
 
892d31d
0c8e12c
c314fac
 
0c8e12c
 
 
892d31d
c314fac
0c8e12c
892d31d
0c8e12c
892d31d
c314fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8e12c
892d31d
0c8e12c
c314fac
0c8e12c
c314fac
0c8e12c
c314fac
 
0c8e12c
c314fac
0c8e12c
892d31d
c314fac
 
 
 
0c8e12c
c314fac
 
0c8e12c
c314fac
 
0c8e12c
 
892d31d
c314fac
 
0c8e12c
 
 
 
 
 
c314fac
 
 
0c8e12c
c314fac
 
 
 
0c8e12c
c314fac
 
0c8e12c
c314fac
0c8e12c
c314fac
0c8e12c
 
892d31d
c314fac
 
0c8e12c
c314fac
0c8e12c
 
c314fac
0c8e12c
 
c314fac
 
 
 
 
0c8e12c
 
 
 
c314fac
0c8e12c
 
 
 
 
c314fac
0c8e12c
 
c314fac
892d31d
c314fac
 
0c8e12c
892d31d
c314fac
 
 
 
892d31d
c314fac
 
 
892d31d
 
c314fac
 
 
0c8e12c
 
 
 
c314fac
0c8e12c
c314fac
 
 
 
 
 
 
 
0c8e12c
c314fac
70733b2
0c8e12c
c314fac
0c8e12c
 
 
c314fac
 
0c8e12c
 
c314fac
892d31d
c314fac
0c8e12c
c314fac
 
 
 
0c8e12c
c314fac
 
0c8e12c
c314fac
0c8e12c
 
 
 
 
 
c314fac
0c8e12c
c314fac
 
 
0c8e12c
 
 
 
 
c314fac
0c8e12c
892d31d
c314fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
892d31d
c314fac
70733b2
c314fac
0c8e12c
 
70733b2
892d31d
0c8e12c
 
c314fac
0c8e12c
c314fac
 
 
 
0c8e12c
 
c314fac
0c8e12c
 
c314fac
0c8e12c
 
 
 
c314fac
 
 
0c8e12c
 
c314fac
 
0c8e12c
 
 
 
c314fac
0c8e12c
 
 
c314fac
 
0c8e12c
c314fac
0c8e12c
c314fac
0c8e12c
 
c314fac
0c8e12c
c314fac
0c8e12c
 
 
c314fac
 
0c8e12c
 
c314fac
0c8e12c
 
 
 
 
c314fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c8e12c
c314fac
0c8e12c
 
 
c314fac
0c8e12c
 
 
c314fac
0c8e12c
c314fac
0c8e12c
892d31d
0c8e12c
c314fac
 
 
 
0c8e12c
 
c314fac
 
 
0c8e12c
 
 
c314fac
 
0c8e12c
 
 
 
 
 
c314fac
 
0c8e12c
 
 
 
 
 
 
 
c314fac
 
0c8e12c
c314fac
 
 
0c8e12c
892d31d
0c8e12c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image, peft_utils
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re

# Load the base model
MAX_SEED = np.iinfo(np.int32).max

pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")

try:  # Temporary workaround for diffusers LoRA loading issue
    from diffusers.utils.peft_utils import _derive_exclude_modules

    def new_derive_exclude_modules(*args, **kwargs):
        exclude_modules = _derive_exclude_modules(*args, **kwargs)
        if exclude_modules is not None:
            exclude_modules = [n for n in exclude_modules if "proj_out" not in n]
        return exclude_modules
    peft_utils._derive_exclude_modules = new_derive_exclude_modules
except:
    pass

# Load LoRA configurations from JSON
with open("lora_configs.json", "r") as file:
    data = json.load(file)
    lora_configs = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item.get("trigger_word", ""),
            "trigger_position": item.get("trigger_position", "prepend"),
            "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
        }
        for item in data
    ]
print(f"Loaded {len(lora_configs)} LoRAs from JSON")

# Global variables for adapter management
active_lora_adapter = None
lora_cache = {}

def load_lora_weights(repo_id, weights_filename):
    """Load adapter weights from HuggingFace"""
    try:
        if repo_id not in lora_cache:
            lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
            lora_cache[repo_id] = lora_path
        return lora_cache[repo_id]
    except Exception as e:
        print(f"Error loading adapter from {repo_id}: {e}")
        return None

def on_lora_select(selected_state: gr.SelectData, lora_configs):
    """Update UI when an adapter is selected"""
    if selected_state.index >= len(lora_configs):
        return "### No adapter selected", gr.update(), None
    
    lora_repo = lora_configs[selected_state.index]["repo"]
    trigger_word = lora_configs[selected_state.index]["trigger_word"]
    
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
    
    return updated_text, gr.update(placeholder=new_placeholder), selected_state.index

def fetch_lora_from_hf(link):
    """Retrieve adapter from HuggingFace link"""
    split_link = link.split("/")
    if len(split_link) == 2:
        try:
            model_card = ModelCard.load(link)
            trigger_word = model_card.data.get("instance_prompt", "")
            
            fs = HfFileSystem()
            list_of_files = fs.ls(link, detail=False)
            safetensors_file = None
            
            for file in list_of_files:
                if file.endswith(".safetensors") and "lora" in file.lower():
                    safetensors_file = file.split("/")[-1]
                    break
            
            if not safetensors_file:
                safetensors_file = "pytorch_lora_weights.safetensors"
            
            return split_link[1], safetensors_file, trigger_word
        except Exception as e:
            raise Exception(f"Error loading adapter: {e}")
    else:
        raise Exception("Invalid HuggingFace repository format")

def load_user_lora(link):
    """Load a user-provided adapter"""
    if not link:
        return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on an adapter in the gallery to select it", None
    
    try:
        repo_name, weights_file, trigger_word = fetch_lora_from_hf(link)
        
        card = f'''
        <div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
            <span><strong>Loaded custom adapter:</strong></span>
            <div style="margin-top: 8px;">
                <h4>{repo_name}</h4>
                <small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
            </div>
        </div>
        '''
        
        user_lora_data = {
            "repo": link,
            "weights": weights_file,
            "trigger_word": trigger_word
        }
        
        return gr.update(visible=True), card, gr.update(visible=True), user_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
    
    except Exception as e:
        return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on an adapter in the gallery to select it", None

def unload_user_lora():
    """Remove the user-provided adapter"""
    return "", gr.update(visible=False), gr.update(visible=False), None, None

def sort_lora_gallery(lora_configs):
    """Sort the adapter gallery by likes"""
    sorted_gallery = sorted(lora_configs, key=lambda x: x.get("likes", 0), reverse=True)
    return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery

def generate_image_wrapper(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.75, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper for image generation to handle state"""
    return generate_image(input_image, prompt, selected_index, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, lora_configs, progress)

@spaces.GPU
def generate_image(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.0, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
    """Generate an image using the selected adapter"""
    global active_lora_adapter, pipe
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Select the adapter to use
    lora_to_use = None
    if user_lora:
        lora_to_use = user_lora
    elif selected_index is not None and lora_configs and selected_index < len(lora_configs):
        lora_to_use = lora_configs[selected_index]
    print(f"Loaded {len(lora_configs)} adapters from JSON")
    
    # Load the adapter if necessary
    if lora_to_use and lora_to_use != active_lora_adapter:
        try:
            if active_lora_adapter:
                pipe.unload_lora_weights()
            
            lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
            if lora_path:
                pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
                pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
                print(f"loaded: {lora_path} with scale {lora_scale}")
                active_lora_adapter = lora_to_use
            
        except Exception as e:
            print(f"Error loading adapter: {e}")
    else:
        print(f"using already loaded adapter: {lora_to_use}")
    
    input_image = input_image.convert("RGB")
    # Modify prompt based on trigger word
    trigger_word = lora_to_use["trigger_word"]
    if trigger_word == ", How2Draw":
        prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
    elif trigger_word == "__ ":
        prompt = f" {prompt}. Accurately render the toolimpact logo and any tool impact iconography. The toolimpact logo begins with a two-line-tall drop-cap capital letter T with a dot in the center of its top bar."
    else:
        prompt = f" {prompt}. convert the style of this photo or image to {trigger_word}. Maintain the facial identity of any persons and the general features of the image!"
    
    try:
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=torch.Generator().manual_seed(seed),
            width=width,
            height=height,
            max_area=width * height
        ).images[0]
        
        return image, seed, gr.update(visible=True)
    
    except Exception as e:
        print(f"Error during generation: {e}")
        return None, seed, gr.update(visible=False)

# CSS styling
css = """
#app_container {
    display: flex;
    gap: 20px;
}
#left_panel {
    min-width: 400px;
}
#lora_info {
    color: #2563eb;
    font-weight: bold;
}
#edit_prompt {
    flex-grow: 1;
}
#generate_button {
    background: linear-gradient(45deg, #2563eb, #3b82f6);
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 6px;
    font-weight: bold;
}
.user_lora_card {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 12px;
    margin: 8px 0;
}
#lora_gallery{
    overflow: scroll !important
}
"""

# Build the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as demo:
    gr_lora_configs = gr.State(value=lora_configs)
    
    title = gr.HTML(
        """<h1>Flux Kontext DLC😍</h1>""",
    )
    
    selected_state = gr.State(value=None)
    user_lora = gr.State(value=None)
    
    with gr.Row(elem_id="app_container"):
        with gr.Column(scale=4, elem_id="left_panel"):
            with gr.Group(elem_id="lora_selection"):
                input_image = gr.Image(label="Upload a picture", type="pil", height=300)
                
                gallery = gr.Gallery(
                    label="Pick an Adapter",
                    allow_preview=False,
                    columns=3,
                    elem_id="lora_gallery",
                    show_share_button=False,
                    height=400
                )
                
                user_lora_input = gr.Textbox(
                    label="Or enter a custom HuggingFace adapter", 
                    placeholder="e.g., username/adapter-name",
                    visible=True
                )
                user_lora_card = gr.HTML(visible=False)
                unload_user_lora_button = gr.Button("Remove custom adapter", visible=True)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="optional description, e.g. 'colorize and stylize, leave all else as is'",
                    elem_id="edit_prompt"
                )
                run_button = gr.Button("Generate", elem_id="generate_button")
            
            result = gr.Image(label="Generated Image", interactive=False)
            reuse_button = gr.Button("Reuse this image", visible=False)
            
            with gr.Accordion("Advanced Settings", open=True):
                lora_scale = gr.Slider(
                    label="Adapter Scale",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.5,
                    info="Controls the strength of the adapter effect"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                steps = gr.Slider(
                    label="Steps",
                    minimum=1,
                    maximum=40,
                    value=10,
                    step=1
                )
                width = gr.Slider(
                    label="Width",
                    minimum=128,
                    maximum=2560,
                    step=1,
                    value=960,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=128,
                    maximum=2560,
                    step=1,
                    value=1280,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.8,
                )
            
            prompt_title = gr.Markdown(
                value="### Click on an adapter in the gallery to select it",
                visible=True,
                elem_id="lora_info",
            )

    # Event handlers
    user_lora_input.input(
        fn=load_user_lora,
        inputs=[user_lora_input],
        outputs=[user_lora_card, user_lora_card, unload_user_lora_button, user_lora, gallery, prompt_title, selected_state],
    )
    
    unload_user_lora_button.click(
        fn=unload_user_lora,
        outputs=[user_lora_input, unload_user_lora_button, user_lora_card, user_lora, selected_state]
    )
    
    gallery.select(
        fn=on_lora_select,
        inputs=[gr_lora_configs],
        outputs=[prompt_title, prompt, selected_state],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=generate_image_wrapper,
        inputs=[input_image, prompt, selected_state, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, gr_lora_configs],
        outputs=[result, seed, reuse_button]
    )
    
    reuse_button.click(
        fn=lambda image: image,
        inputs=[result],
        outputs=[input_image]
    )
    
    # Initialize the gallery
    demo.load(
        fn=sort_lora_gallery, 
        inputs=[gr_lora_configs], 
        outputs=[gallery, gr_lora_configs]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()