Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,121 Bytes
892d31d 0c8e12c 892d31d 0c8e12c 892d31d 0c8e12c c314fac 0c8e12c 892d31d c314fac 0c8e12c 892d31d 0c8e12c 892d31d c314fac 0c8e12c 892d31d 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 892d31d c314fac 0c8e12c 892d31d c314fac 892d31d c314fac 892d31d c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 70733b2 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 892d31d c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d c314fac 892d31d c314fac 70733b2 c314fac 0c8e12c 70733b2 892d31d 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c c314fac 0c8e12c 892d31d 0c8e12c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image, peft_utils
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re
# Load the base model
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
try: # Temporary workaround for diffusers LoRA loading issue
from diffusers.utils.peft_utils import _derive_exclude_modules
def new_derive_exclude_modules(*args, **kwargs):
exclude_modules = _derive_exclude_modules(*args, **kwargs)
if exclude_modules is not None:
exclude_modules = [n for n in exclude_modules if "proj_out" not in n]
return exclude_modules
peft_utils._derive_exclude_modules = new_derive_exclude_modules
except:
pass
# Load LoRA configurations from JSON
with open("lora_configs.json", "r") as file:
data = json.load(file)
lora_configs = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item.get("trigger_word", ""),
"trigger_position": item.get("trigger_position", "prepend"),
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
}
for item in data
]
print(f"Loaded {len(lora_configs)} LoRAs from JSON")
# Global variables for adapter management
active_lora_adapter = None
lora_cache = {}
def load_lora_weights(repo_id, weights_filename):
"""Load adapter weights from HuggingFace"""
try:
if repo_id not in lora_cache:
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
lora_cache[repo_id] = lora_path
return lora_cache[repo_id]
except Exception as e:
print(f"Error loading adapter from {repo_id}: {e}")
return None
def on_lora_select(selected_state: gr.SelectData, lora_configs):
"""Update UI when an adapter is selected"""
if selected_state.index >= len(lora_configs):
return "### No adapter selected", gr.update(), None
lora_repo = lora_configs[selected_state.index]["repo"]
trigger_word = lora_configs[selected_state.index]["trigger_word"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
def fetch_lora_from_hf(link):
"""Retrieve adapter from HuggingFace link"""
split_link = link.split("/")
if len(split_link) == 2:
try:
model_card = ModelCard.load(link)
trigger_word = model_card.data.get("instance_prompt", "")
fs = HfFileSystem()
list_of_files = fs.ls(link, detail=False)
safetensors_file = None
for file in list_of_files:
if file.endswith(".safetensors") and "lora" in file.lower():
safetensors_file = file.split("/")[-1]
break
if not safetensors_file:
safetensors_file = "pytorch_lora_weights.safetensors"
return split_link[1], safetensors_file, trigger_word
except Exception as e:
raise Exception(f"Error loading adapter: {e}")
else:
raise Exception("Invalid HuggingFace repository format")
def load_user_lora(link):
"""Load a user-provided adapter"""
if not link:
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on an adapter in the gallery to select it", None
try:
repo_name, weights_file, trigger_word = fetch_lora_from_hf(link)
card = f'''
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
<span><strong>Loaded custom adapter:</strong></span>
<div style="margin-top: 8px;">
<h4>{repo_name}</h4>
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
</div>
</div>
'''
user_lora_data = {
"repo": link,
"weights": weights_file,
"trigger_word": trigger_word
}
return gr.update(visible=True), card, gr.update(visible=True), user_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
except Exception as e:
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on an adapter in the gallery to select it", None
def unload_user_lora():
"""Remove the user-provided adapter"""
return "", gr.update(visible=False), gr.update(visible=False), None, None
def sort_lora_gallery(lora_configs):
"""Sort the adapter gallery by likes"""
sorted_gallery = sorted(lora_configs, key=lambda x: x.get("likes", 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def generate_image_wrapper(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.75, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
"""Wrapper for image generation to handle state"""
return generate_image(input_image, prompt, selected_index, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, lora_configs, progress)
@spaces.GPU
def generate_image(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.0, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)):
"""Generate an image using the selected adapter"""
global active_lora_adapter, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Select the adapter to use
lora_to_use = None
if user_lora:
lora_to_use = user_lora
elif selected_index is not None and lora_configs and selected_index < len(lora_configs):
lora_to_use = lora_configs[selected_index]
print(f"Loaded {len(lora_configs)} adapters from JSON")
# Load the adapter if necessary
if lora_to_use and lora_to_use != active_lora_adapter:
try:
if active_lora_adapter:
pipe.unload_lora_weights()
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
if lora_path:
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
print(f"loaded: {lora_path} with scale {lora_scale}")
active_lora_adapter = lora_to_use
except Exception as e:
print(f"Error loading adapter: {e}")
else:
print(f"using already loaded adapter: {lora_to_use}")
input_image = input_image.convert("RGB")
# Modify prompt based on trigger word
trigger_word = lora_to_use["trigger_word"]
if trigger_word == ", How2Draw":
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
elif trigger_word == "__ ":
prompt = f" {prompt}. Accurately render the toolimpact logo and any tool impact iconography. The toolimpact logo begins with a two-line-tall drop-cap capital letter T with a dot in the center of its top bar."
else:
prompt = f" {prompt}. convert the style of this photo or image to {trigger_word}. Maintain the facial identity of any persons and the general features of the image!"
try:
image = pipe(
image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
width=width,
height=height,
max_area=width * height
).images[0]
return image, seed, gr.update(visible=True)
except Exception as e:
print(f"Error during generation: {e}")
return None, seed, gr.update(visible=False)
# CSS styling
css = """
#app_container {
display: flex;
gap: 20px;
}
#left_panel {
min-width: 400px;
}
#lora_info {
color: #2563eb;
font-weight: bold;
}
#edit_prompt {
flex-grow: 1;
}
#generate_button {
background: linear-gradient(45deg, #2563eb, #3b82f6);
color: white;
border: none;
padding: 8px 16px;
border-radius: 6px;
font-weight: bold;
}
.user_lora_card {
background: #f8fafc;
border: 1px solid #e2e8f0;
border-radius: 8px;
padding: 12px;
margin: 8px 0;
}
#lora_gallery{
overflow: scroll !important
}
"""
# Build the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as demo:
gr_lora_configs = gr.State(value=lora_configs)
title = gr.HTML(
"""<h1>Flux Kontext DLC😍</h1>""",
)
selected_state = gr.State(value=None)
user_lora = gr.State(value=None)
with gr.Row(elem_id="app_container"):
with gr.Column(scale=4, elem_id="left_panel"):
with gr.Group(elem_id="lora_selection"):
input_image = gr.Image(label="Upload a picture", type="pil", height=300)
gallery = gr.Gallery(
label="Pick an Adapter",
allow_preview=False,
columns=3,
elem_id="lora_gallery",
show_share_button=False,
height=400
)
user_lora_input = gr.Textbox(
label="Or enter a custom HuggingFace adapter",
placeholder="e.g., username/adapter-name",
visible=True
)
user_lora_card = gr.HTML(visible=False)
unload_user_lora_button = gr.Button("Remove custom adapter", visible=True)
with gr.Column(scale=5):
with gr.Row():
prompt = gr.Textbox(
label="Editing Prompt",
show_label=False,
lines=1,
max_lines=1,
placeholder="optional description, e.g. 'colorize and stylize, leave all else as is'",
elem_id="edit_prompt"
)
run_button = gr.Button("Generate", elem_id="generate_button")
result = gr.Image(label="Generated Image", interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Accordion("Advanced Settings", open=True):
lora_scale = gr.Slider(
label="Adapter Scale",
minimum=0,
maximum=2,
step=0.1,
value=1.5,
info="Controls the strength of the adapter effect"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=40,
value=10,
step=1
)
width = gr.Slider(
label="Width",
minimum=128,
maximum=2560,
step=1,
value=960,
)
height = gr.Slider(
label="Height",
minimum=128,
maximum=2560,
step=1,
value=1280,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.8,
)
prompt_title = gr.Markdown(
value="### Click on an adapter in the gallery to select it",
visible=True,
elem_id="lora_info",
)
# Event handlers
user_lora_input.input(
fn=load_user_lora,
inputs=[user_lora_input],
outputs=[user_lora_card, user_lora_card, unload_user_lora_button, user_lora, gallery, prompt_title, selected_state],
)
unload_user_lora_button.click(
fn=unload_user_lora,
outputs=[user_lora_input, unload_user_lora_button, user_lora_card, user_lora, selected_state]
)
gallery.select(
fn=on_lora_select,
inputs=[gr_lora_configs],
outputs=[prompt_title, prompt, selected_state],
show_progress=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=generate_image_wrapper,
inputs=[input_image, prompt, selected_state, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, gr_lora_configs],
outputs=[result, seed, reuse_button]
)
reuse_button.click(
fn=lambda image: image,
inputs=[result],
outputs=[input_image]
)
# Initialize the gallery
demo.load(
fn=sort_lora_gallery,
inputs=[gr_lora_configs],
outputs=[gallery, gr_lora_configs]
)
demo.queue(default_concurrency_limit=None)
demo.launch() |