Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
import json | |
import os | |
from PIL import Image | |
from diffusers import FluxKontextPipeline | |
from diffusers.utils import load_image, peft_utils | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard | |
from safetensors.torch import load_file | |
import requests | |
import re | |
# Load the base model | |
MAX_SEED = np.iinfo(np.int32).max | |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
try: # Temporary workaround for diffusers LoRA loading issue | |
from diffusers.utils.peft_utils import _derive_exclude_modules | |
def new_derive_exclude_modules(*args, **kwargs): | |
exclude_modules = _derive_exclude_modules(*args, **kwargs) | |
if exclude_modules is not None: | |
exclude_modules = [n for n in exclude_modules if "proj_out" not in n] | |
return exclude_modules | |
peft_utils._derive_exclude_modules = new_derive_exclude_modules | |
except: | |
pass | |
# Load LoRA configurations from JSON | |
with open("lora_configs.json", "r") as file: | |
data = json.load(file) | |
lora_configs = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item.get("trigger_word", ""), | |
"trigger_position": item.get("trigger_position", "prepend"), | |
"weights": item.get("weights", "pytorch_lora_weights.safetensors"), | |
} | |
for item in data | |
] | |
print(f"Loaded {len(lora_configs)} LoRAs from JSON") | |
# Global variables for adapter management | |
active_lora_adapter = None | |
lora_cache = {} | |
def load_lora_weights(repo_id, weights_filename): | |
"""Load adapter weights from HuggingFace""" | |
try: | |
if repo_id not in lora_cache: | |
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) | |
lora_cache[repo_id] = lora_path | |
return lora_cache[repo_id] | |
except Exception as e: | |
print(f"Error loading adapter from {repo_id}: {e}") | |
return None | |
def on_lora_select(selected_state: gr.SelectData, lora_configs): | |
"""Update UI when an adapter is selected""" | |
if selected_state.index >= len(lora_configs): | |
return "### No adapter selected", gr.update(), None | |
lora_repo = lora_configs[selected_state.index]["repo"] | |
trigger_word = lora_configs[selected_state.index]["trigger_word"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'" | |
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index | |
def fetch_lora_from_hf(link): | |
"""Retrieve adapter from HuggingFace link""" | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
try: | |
model_card = ModelCard.load(link) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
fs = HfFileSystem() | |
list_of_files = fs.ls(link, detail=False) | |
safetensors_file = None | |
for file in list_of_files: | |
if file.endswith(".safetensors") and "lora" in file.lower(): | |
safetensors_file = file.split("/")[-1] | |
break | |
if not safetensors_file: | |
safetensors_file = "pytorch_lora_weights.safetensors" | |
return split_link[1], safetensors_file, trigger_word | |
except Exception as e: | |
raise Exception(f"Error loading adapter: {e}") | |
else: | |
raise Exception("Invalid HuggingFace repository format") | |
def load_user_lora(link): | |
"""Load a user-provided adapter""" | |
if not link: | |
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on an adapter in the gallery to select it", None | |
try: | |
repo_name, weights_file, trigger_word = fetch_lora_from_hf(link) | |
card = f''' | |
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;"> | |
<span><strong>Loaded custom adapter:</strong></span> | |
<div style="margin-top: 8px;"> | |
<h4>{repo_name}</h4> | |
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small> | |
</div> | |
</div> | |
''' | |
user_lora_data = { | |
"repo": link, | |
"weights": weights_file, | |
"trigger_word": trigger_word | |
} | |
return gr.update(visible=True), card, gr.update(visible=True), user_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None | |
except Exception as e: | |
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on an adapter in the gallery to select it", None | |
def unload_user_lora(): | |
"""Remove the user-provided adapter""" | |
return "", gr.update(visible=False), gr.update(visible=False), None, None | |
def sort_lora_gallery(lora_configs): | |
"""Sort the adapter gallery by likes""" | |
sorted_gallery = sorted(lora_configs, key=lambda x: x.get("likes", 0), reverse=True) | |
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
def generate_image_wrapper(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.75, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)): | |
"""Wrapper for image generation to handle state""" | |
return generate_image(input_image, prompt, selected_index, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, lora_configs, progress) | |
def generate_image(input_image, prompt, selected_index, user_lora, seed=42, randomize_seed=False, steps=28, guidance_scale=2.5, lora_scale=1.0, width=960, height=1280, lora_configs=None, progress=gr.Progress(track_tqdm=True)): | |
"""Generate an image using the selected adapter""" | |
global active_lora_adapter, pipe | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Select the adapter to use | |
lora_to_use = None | |
if user_lora: | |
lora_to_use = user_lora | |
elif selected_index is not None and lora_configs and selected_index < len(lora_configs): | |
lora_to_use = lora_configs[selected_index] | |
print(f"Loaded {len(lora_configs)} adapters from JSON") | |
# Load the adapter if necessary | |
if lora_to_use and lora_to_use != active_lora_adapter: | |
try: | |
if active_lora_adapter: | |
pipe.unload_lora_weights() | |
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"]) | |
if lora_path: | |
pipe.load_lora_weights(lora_path, adapter_name="selected_lora") | |
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) | |
print(f"loaded: {lora_path} with scale {lora_scale}") | |
active_lora_adapter = lora_to_use | |
except Exception as e: | |
print(f"Error loading adapter: {e}") | |
else: | |
print(f"using already loaded adapter: {lora_to_use}") | |
input_image = input_image.convert("RGB") | |
# Modify prompt based on trigger word | |
trigger_word = lora_to_use["trigger_word"] | |
if trigger_word == ", How2Draw": | |
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features" | |
elif trigger_word == "__ ": | |
prompt = f" {prompt}. Accurately render the toolimpact logo and any tool impact iconography. The toolimpact logo begins with a two-line-tall drop-cap capital letter T with a dot in the center of its top bar." | |
else: | |
prompt = f" {prompt}. convert the style of this photo or image to {trigger_word}. Maintain the facial identity of any persons and the general features of the image!" | |
try: | |
image = pipe( | |
image=input_image, | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=steps, | |
generator=torch.Generator().manual_seed(seed), | |
width=width, | |
height=height, | |
max_area=width * height | |
).images[0] | |
return image, seed, gr.update(visible=True) | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
return None, seed, gr.update(visible=False) | |
# CSS styling | |
css = """ | |
#app_container { | |
display: flex; | |
gap: 20px; | |
} | |
#left_panel { | |
min-width: 400px; | |
} | |
#lora_info { | |
color: #2563eb; | |
font-weight: bold; | |
} | |
#edit_prompt { | |
flex-grow: 1; | |
} | |
#generate_button { | |
background: linear-gradient(45deg, #2563eb, #3b82f6); | |
color: white; | |
border: none; | |
padding: 8px 16px; | |
border-radius: 6px; | |
font-weight: bold; | |
} | |
.user_lora_card { | |
background: #f8fafc; | |
border: 1px solid #e2e8f0; | |
border-radius: 8px; | |
padding: 12px; | |
margin: 8px 0; | |
} | |
#lora_gallery{ | |
overflow: scroll !important | |
} | |
""" | |
# Build the Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as demo: | |
gr_lora_configs = gr.State(value=lora_configs) | |
title = gr.HTML( | |
"""<h1>Flux Kontext DLC😍</h1>""", | |
) | |
selected_state = gr.State(value=None) | |
user_lora = gr.State(value=None) | |
with gr.Row(elem_id="app_container"): | |
with gr.Column(scale=4, elem_id="left_panel"): | |
with gr.Group(elem_id="lora_selection"): | |
input_image = gr.Image(label="Upload a picture", type="pil", height=300) | |
gallery = gr.Gallery( | |
label="Pick an Adapter", | |
allow_preview=False, | |
columns=3, | |
elem_id="lora_gallery", | |
show_share_button=False, | |
height=400 | |
) | |
user_lora_input = gr.Textbox( | |
label="Or enter a custom HuggingFace adapter", | |
placeholder="e.g., username/adapter-name", | |
visible=True | |
) | |
user_lora_card = gr.HTML(visible=False) | |
unload_user_lora_button = gr.Button("Remove custom adapter", visible=True) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Editing Prompt", | |
show_label=False, | |
lines=1, | |
max_lines=1, | |
placeholder="optional description, e.g. 'colorize and stylize, leave all else as is'", | |
elem_id="edit_prompt" | |
) | |
run_button = gr.Button("Generate", elem_id="generate_button") | |
result = gr.Image(label="Generated Image", interactive=False) | |
reuse_button = gr.Button("Reuse this image", visible=False) | |
with gr.Accordion("Advanced Settings", open=True): | |
lora_scale = gr.Slider( | |
label="Adapter Scale", | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=1.5, | |
info="Controls the strength of the adapter effect" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=40, | |
value=10, | |
step=1 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=128, | |
maximum=2560, | |
step=1, | |
value=960, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=128, | |
maximum=2560, | |
step=1, | |
value=1280, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=2.8, | |
) | |
prompt_title = gr.Markdown( | |
value="### Click on an adapter in the gallery to select it", | |
visible=True, | |
elem_id="lora_info", | |
) | |
# Event handlers | |
user_lora_input.input( | |
fn=load_user_lora, | |
inputs=[user_lora_input], | |
outputs=[user_lora_card, user_lora_card, unload_user_lora_button, user_lora, gallery, prompt_title, selected_state], | |
) | |
unload_user_lora_button.click( | |
fn=unload_user_lora, | |
outputs=[user_lora_input, unload_user_lora_button, user_lora_card, user_lora, selected_state] | |
) | |
gallery.select( | |
fn=on_lora_select, | |
inputs=[gr_lora_configs], | |
outputs=[prompt_title, prompt, selected_state], | |
show_progress=False | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=generate_image_wrapper, | |
inputs=[input_image, prompt, selected_state, user_lora, seed, randomize_seed, steps, guidance_scale, lora_scale, width, height, gr_lora_configs], | |
outputs=[result, seed, reuse_button] | |
) | |
reuse_button.click( | |
fn=lambda image: image, | |
inputs=[result], | |
outputs=[input_image] | |
) | |
# Initialize the gallery | |
demo.load( | |
fn=sort_lora_gallery, | |
inputs=[gr_lora_configs], | |
outputs=[gallery, gr_lora_configs] | |
) | |
demo.queue(default_concurrency_limit=None) | |
demo.launch() |