Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,360 +1,474 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
from threading import Thread
|
8 |
-
|
9 |
import gradio as gr
|
|
|
10 |
import spaces
|
11 |
import torch
|
12 |
-
import
|
|
|
|
|
13 |
from PIL import Image
|
14 |
-
import
|
15 |
-
|
16 |
-
from
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
TextIteratorStreamer,
|
21 |
-
)
|
22 |
-
from transformers.image_utils import load_image
|
23 |
-
|
24 |
-
# Constants for text generation
|
25 |
-
MAX_MAX_NEW_TOKENS = 2048
|
26 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
27 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
28 |
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
|
33 |
-
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
34 |
-
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
35 |
-
MODEL_ID_M, trust_remote_code=True,
|
36 |
-
torch_dtype=torch.float16).to(device).eval()
|
37 |
|
38 |
-
# Load
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
text: str,
|
93 |
-
image: Image.Image,
|
94 |
-
max_new_tokens: int = 1024,
|
95 |
-
temperature: float = 0.6,
|
96 |
-
top_p: float = 0.9,
|
97 |
-
top_k: int = 50,
|
98 |
-
repetition_penalty: float = 1.2):
|
99 |
-
"""
|
100 |
-
Generates responses using the selected model for image input.
|
101 |
-
"""
|
102 |
-
if model_name == "Camel-Doc-OCR-080125(v2)":
|
103 |
-
processor = processor_m
|
104 |
-
model = model_m
|
105 |
-
elif model_name == "OCRFlux-3B":
|
106 |
-
processor = processor_x
|
107 |
-
model = model_x
|
108 |
-
elif model_name == "Behemoth-3B-070225":
|
109 |
-
processor = processor_o
|
110 |
-
model = model_o
|
111 |
-
elif model_name == "MonkeyOCR-pro-1.2B":
|
112 |
-
processor = processor_t
|
113 |
-
model = model_t
|
114 |
-
elif model_name == "ViGoRL-MCTS-SFT-7B":
|
115 |
-
processor = processor_a
|
116 |
-
model = model_a
|
117 |
-
else:
|
118 |
-
yield "Invalid model selected.", "Invalid model selected."
|
119 |
-
return
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
{"type": "image", "image": image},
|
129 |
-
{"type": "text", "text": text},
|
130 |
-
]
|
131 |
-
}]
|
132 |
-
prompt_full = processor.apply_chat_template(messages,
|
133 |
-
tokenize=False,
|
134 |
-
add_generation_prompt=True)
|
135 |
-
inputs = processor(text=[prompt_full],
|
136 |
-
images=[image],
|
137 |
-
return_tensors="pt",
|
138 |
-
padding=True,
|
139 |
-
truncation=False,
|
140 |
-
max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
141 |
-
streamer = TextIteratorStreamer(processor,
|
142 |
-
skip_prompt=True,
|
143 |
-
skip_special_tokens=True)
|
144 |
-
generation_kwargs = {
|
145 |
-
**inputs, "streamer": streamer,
|
146 |
-
"max_new_tokens": max_new_tokens
|
147 |
-
}
|
148 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
149 |
-
thread.start()
|
150 |
-
buffer = ""
|
151 |
-
for new_text in streamer:
|
152 |
-
buffer += new_text
|
153 |
-
time.sleep(0.01)
|
154 |
-
yield buffer, buffer
|
155 |
|
156 |
-
# Function to generate text responses based on video input
|
157 |
@spaces.GPU
|
158 |
-
def
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
else:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
"
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
"
|
219 |
-
|
220 |
-
"
|
221 |
-
|
222 |
-
"
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
["Caption the image.", "assets/images/A.jpg"],
|
240 |
-
["Make this into a table for the README.md file.", "assets/images/2.jpg"],
|
241 |
-
["Extract the table content from the image.", "assets/images/3.png"],
|
242 |
-
["Perform OCR on the image.", "assets/images/4.jpg"]
|
243 |
-
]
|
244 |
-
|
245 |
-
video_examples = [
|
246 |
-
["Explain the video in detail.", "assets/videos/a.mp4"],
|
247 |
-
["Explain the video in detail.", "assets/videos/b.mp4"]
|
248 |
-
]
|
249 |
-
|
250 |
-
#css
|
251 |
-
css = """
|
252 |
-
.submit-btn {
|
253 |
-
background-color: #2980b9 !important;
|
254 |
-
color: white !important;
|
255 |
-
}
|
256 |
-
.submit-btn:hover {
|
257 |
-
background-color: #3498db !important;
|
258 |
-
}
|
259 |
-
.canvas-output {
|
260 |
-
border: 2px solid #4682B4;
|
261 |
-
border-radius: 10px;
|
262 |
-
padding: 20px;
|
263 |
-
}
|
264 |
-
"""
|
265 |
|
266 |
-
# Create
|
267 |
-
with gr.Blocks(css=css
|
268 |
-
gr.
|
269 |
-
|
|
|
|
|
270 |
)
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
value=0.9)
|
309 |
-
top_k = gr.Slider(label="Top-k",
|
310 |
-
minimum=1,
|
311 |
-
maximum=1000,
|
312 |
-
step=1,
|
313 |
-
value=50)
|
314 |
-
repetition_penalty = gr.Slider(label="Repetition penalty",
|
315 |
-
minimum=1.0,
|
316 |
-
maximum=2.0,
|
317 |
-
step=0.05,
|
318 |
-
value=1.2)
|
319 |
-
|
320 |
-
with gr.Column():
|
321 |
-
with gr.Column(elem_classes="canvas-output"):
|
322 |
-
gr.Markdown("## Output")
|
323 |
-
output = gr.Textbox(label="Raw Output Stream",
|
324 |
-
interactive=False,
|
325 |
-
lines=2, show_copy_button=True)
|
326 |
-
with gr.Accordion("(Result.md)", open=False):
|
327 |
-
markdown_output = gr.Markdown(
|
328 |
-
label="markup.md")
|
329 |
-
|
330 |
-
model_choice = gr.Radio(choices=[
|
331 |
-
"Camel-Doc-OCR-080125(v2)", "OCRFlux-3B",
|
332 |
-
"ViGoRL-MCTS-SFT-7B", "Behemoth-3B-070225",
|
333 |
-
"MonkeyOCR-pro-1.2B"],
|
334 |
-
label="Select Model",
|
335 |
-
value="Camel-Doc-OCR-080125(v2)")
|
336 |
|
337 |
-
gr.
|
338 |
-
gr.
|
339 |
-
gr.Markdown("> Both ViGoRL-MCTS-SFT-3b-Spatial and 7b-Spatial are vision-language models that use multi-turn visually grounded reinforcement learning for precise spatial reasoning and visual grounding, with the 3b and 7b variants differing mainly in their architectural size for fine-grained visual tasks.")
|
340 |
-
gr.Markdown("> Behemoth-3B-070225-post0.1 is an advanced 3B parameter model tailored for extensive multimodal comprehension, document parsing, and possibly generalized OCR/vision-language tasks. MonkeyOCR-pro-1.2B is a lightweight OCR model focusing on high-accuracy text extraction from images and scanned documents, suitable for resource-constrained environments.")
|
341 |
-
gr.Markdown("> ⚠️ Note: Models in this space may not perform well on video inference tasks.")
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
import random
|
6 |
+
import json
|
7 |
+
import os
|
8 |
from PIL import Image
|
9 |
+
from diffusers import FluxKontextPipeline
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
import requests
|
14 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Load Kontext model
|
17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
18 |
|
19 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Load LoRA data
|
22 |
+
flux_loras_raw = [
|
23 |
+
{
|
24 |
+
"image": "examples/1.png",
|
25 |
+
"title": "Studio Ghibli",
|
26 |
+
"repo": "openfree/flux-chatgpt-ghibli-lora",
|
27 |
+
"trigger_word": "ghibli",
|
28 |
+
"weights": "pytorch_lora_weights.safetensors",
|
29 |
+
"likes": 0
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"image": "examples/2.png",
|
33 |
+
"title": "Winslow Homer",
|
34 |
+
"repo": "openfree/winslow-homer",
|
35 |
+
"trigger_word": "homer",
|
36 |
+
"weights": "pytorch_lora_weights.safetensors",
|
37 |
+
"likes": 0
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"image": "examples/3.png",
|
41 |
+
"title": "Van Gogh",
|
42 |
+
"repo": "openfree/van-gogh",
|
43 |
+
"trigger_word": "gogh",
|
44 |
+
"weights": "pytorch_lora_weights.safetensors",
|
45 |
+
"likes": 0
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"image": "examples/4.png",
|
49 |
+
"title": "Paul Cézanne",
|
50 |
+
"repo": "openfree/paul-cezanne",
|
51 |
+
"trigger_word": "Cezanne",
|
52 |
+
"weights": "pytorch_lora_weights.safetensors",
|
53 |
+
"likes": 0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"image": "examples/5.png",
|
57 |
+
"title": "Renoir",
|
58 |
+
"repo": "openfree/pierre-auguste-renoir",
|
59 |
+
"trigger_word": "Renoir",
|
60 |
+
"weights": "pytorch_lora_weights.safetensors",
|
61 |
+
"likes": 0
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"image": "examples/6.png",
|
65 |
+
"title": "Claude Monet",
|
66 |
+
"repo": "openfree/claude-monet",
|
67 |
+
"trigger_word": "claude monet",
|
68 |
+
"weights": "pytorch_lora_weights.safetensors",
|
69 |
+
"likes": 0
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"image": "examples/7.png",
|
73 |
+
"title": "Fantasy Art",
|
74 |
+
"repo": "openfree/myt-flux-fantasy",
|
75 |
+
"trigger_word": "fantasy",
|
76 |
+
"weights": "pytorch_lora_weights.safetensors",
|
77 |
+
"likes": 0
|
78 |
+
}
|
79 |
+
]
|
80 |
+
print(f"Loaded {len(flux_loras_raw)} LoRAs")
|
81 |
+
# Global variables for LoRA management
|
82 |
+
current_lora = None
|
83 |
+
lora_cache = {}
|
84 |
|
85 |
+
def load_lora_weights(repo_id, weights_filename):
|
86 |
+
"""Load LoRA weights from HuggingFace"""
|
87 |
+
try:
|
88 |
+
# First try with the specified filename
|
89 |
+
try:
|
90 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
91 |
+
if repo_id not in lora_cache:
|
92 |
+
lora_cache[repo_id] = lora_path
|
93 |
+
return lora_path
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
|
96 |
+
|
97 |
+
# If the specified file doesn't exist, try to find any .safetensors file
|
98 |
+
from huggingface_hub import list_repo_files
|
99 |
+
try:
|
100 |
+
files = list_repo_files(repo_id)
|
101 |
+
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
|
102 |
+
|
103 |
+
if not safetensors_files:
|
104 |
+
# Try without 'lora' in filename
|
105 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
106 |
+
|
107 |
+
if safetensors_files:
|
108 |
+
# Try the first available file
|
109 |
+
for file in safetensors_files:
|
110 |
+
try:
|
111 |
+
print(f"Trying alternative file: {file}")
|
112 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=file)
|
113 |
+
if repo_id not in lora_cache:
|
114 |
+
lora_cache[repo_id] = lora_path
|
115 |
+
print(f"Successfully loaded alternative LoRA file: {file}")
|
116 |
+
return lora_path
|
117 |
+
except:
|
118 |
+
continue
|
119 |
+
|
120 |
+
print(f"No suitable LoRA files found in {repo_id}")
|
121 |
+
return None
|
122 |
+
|
123 |
+
except Exception as list_error:
|
124 |
+
print(f"Error listing files in repo {repo_id}: {list_error}")
|
125 |
+
return None
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error loading LoRA from {repo_id}: {e}")
|
129 |
+
return None
|
130 |
|
131 |
+
def update_selection(selected_state: gr.SelectData, flux_loras):
|
132 |
+
"""Update UI when a LoRA is selected"""
|
133 |
+
if selected_state.index >= len(flux_loras):
|
134 |
+
return "### No LoRA selected", gr.update(), None
|
135 |
+
|
136 |
+
lora = flux_loras[selected_state.index]
|
137 |
+
lora_title = lora["title"]
|
138 |
+
lora_repo = lora["repo"]
|
139 |
+
trigger_word = lora["trigger_word"]
|
140 |
+
|
141 |
+
# Create a more informative selected text
|
142 |
+
updated_text = f"### 🎨 Selected Style: {lora_title}"
|
143 |
+
new_placeholder = f"Describe additional details, e.g., 'wearing a red hat' or 'smiling'"
|
144 |
+
|
145 |
+
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
|
146 |
|
147 |
+
def get_huggingface_lora(link):
|
148 |
+
"""Download LoRA from HuggingFace link"""
|
149 |
+
split_link = link.split("/")
|
150 |
+
if len(split_link) == 2:
|
151 |
+
try:
|
152 |
+
model_card = ModelCard.load(link)
|
153 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
154 |
+
|
155 |
+
# Try to find the correct safetensors file
|
156 |
+
files = list_repo_files(link)
|
157 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
158 |
+
|
159 |
+
# Prioritize files with 'lora' in the name
|
160 |
+
lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
|
161 |
+
if lora_files:
|
162 |
+
safetensors_file = lora_files[0]
|
163 |
+
elif safetensors_files:
|
164 |
+
safetensors_file = safetensors_files[0]
|
165 |
+
else:
|
166 |
+
# Try .bin files as fallback
|
167 |
+
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
|
168 |
+
if bin_files:
|
169 |
+
safetensors_file = bin_files[0]
|
170 |
+
else:
|
171 |
+
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback
|
172 |
+
|
173 |
+
print(f"Found LoRA file: {safetensors_file} in {link}")
|
174 |
+
return split_link[1], safetensors_file, trigger_word
|
175 |
+
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error in get_huggingface_lora: {e}")
|
178 |
+
# Try basic detection
|
179 |
+
try:
|
180 |
+
files = list_repo_files(link)
|
181 |
+
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
|
182 |
+
return split_link[1], safetensors_file, ""
|
183 |
+
except:
|
184 |
+
raise Exception(f"Error loading LoRA: {e}")
|
185 |
+
else:
|
186 |
+
raise Exception("Invalid HuggingFace repository format")
|
187 |
|
188 |
+
def load_custom_lora(link):
|
189 |
+
"""Load custom LoRA from user input"""
|
190 |
+
if not link:
|
191 |
+
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### 🎨 Select an art style from the gallery", None
|
192 |
+
|
193 |
+
try:
|
194 |
+
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
|
195 |
+
|
196 |
+
card = f'''
|
197 |
+
<div class="custom_lora_card">
|
198 |
+
<div style="display: flex; align-items: center; margin-bottom: 12px;">
|
199 |
+
<span style="font-size: 18px; margin-right: 8px;">✅</span>
|
200 |
+
<strong style="font-size: 16px;">Custom LoRA Loaded!</strong>
|
201 |
+
</div>
|
202 |
+
<div style="background: rgba(255, 255, 255, 0.8); padding: 12px; border-radius: 8px;">
|
203 |
+
<h4 style="margin: 0 0 8px 0; color: #333;">{repo_name}</h4>
|
204 |
+
<small style="color: #666;">{"Trigger: <code style='background: #f0f0f0; padding: 2px 6px; border-radius: 4px;'><b>"+trigger_word+"</b></code>" if trigger_word else "No trigger word found"}</small>
|
205 |
+
</div>
|
206 |
+
</div>
|
207 |
+
'''
|
208 |
+
|
209 |
+
custom_lora_data = {
|
210 |
+
"repo": link,
|
211 |
+
"weights": weights_file,
|
212 |
+
"trigger_word": trigger_word
|
213 |
+
}
|
214 |
+
|
215 |
+
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"🎨 Custom Style: {repo_name}", None
|
216 |
+
|
217 |
+
except Exception as e:
|
218 |
+
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### 🎨 Select an art style from the gallery", None
|
219 |
|
220 |
+
def remove_custom_lora():
|
221 |
+
"""Remove custom LoRA"""
|
222 |
+
return "", gr.update(visible=False), gr.update(visible=False), None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
+
def classify_gallery(flux_loras):
|
225 |
+
"""Sort gallery by likes"""
|
226 |
+
try:
|
227 |
+
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
228 |
+
gallery_items = []
|
229 |
+
|
230 |
+
for item in sorted_gallery:
|
231 |
+
if "image" in item and "title" in item:
|
232 |
+
image_path = item["image"]
|
233 |
+
title = item["title"]
|
234 |
+
|
235 |
+
# Simply use the path as-is for Gradio to handle
|
236 |
+
gallery_items.append((image_path, title))
|
237 |
+
print(f"Added to gallery: {image_path} - {title}")
|
238 |
+
|
239 |
+
print(f"Total gallery items: {len(gallery_items)}")
|
240 |
+
return gallery_items, sorted_gallery
|
241 |
+
except Exception as e:
|
242 |
+
print(f"Error in classify_gallery: {e}")
|
243 |
+
import traceback
|
244 |
+
traceback.print_exc()
|
245 |
+
return [], []
|
246 |
|
247 |
+
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
248 |
+
"""Wrapper function to handle state serialization"""
|
249 |
+
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
|
|
251 |
@spaces.GPU
|
252 |
+
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
253 |
+
"""Generate image with selected LoRA"""
|
254 |
+
global current_lora, pipe
|
255 |
+
|
256 |
+
# Check if input image is provided
|
257 |
+
if input_image is None:
|
258 |
+
gr.Warning("Please upload your portrait photo first! 📸")
|
259 |
+
return None, seed, gr.update(visible=False)
|
260 |
+
|
261 |
+
if randomize_seed:
|
262 |
+
seed = random.randint(0, MAX_SEED)
|
263 |
+
|
264 |
+
# Determine which LoRA to use
|
265 |
+
lora_to_use = None
|
266 |
+
if custom_lora:
|
267 |
+
lora_to_use = custom_lora
|
268 |
+
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
|
269 |
+
lora_to_use = flux_loras[selected_index]
|
270 |
+
# Load LoRA if needed
|
271 |
+
if lora_to_use and lora_to_use != current_lora:
|
272 |
+
try:
|
273 |
+
# Unload current LoRA
|
274 |
+
if current_lora:
|
275 |
+
pipe.unload_lora_weights()
|
276 |
+
print(f"Unloaded previous LoRA")
|
277 |
+
|
278 |
+
# Load new LoRA
|
279 |
+
repo_id = lora_to_use.get("repo", "unknown")
|
280 |
+
weights_file = lora_to_use.get("weights", "pytorch_lora_weights.safetensors")
|
281 |
+
print(f"Loading LoRA: {repo_id} with weights: {weights_file}")
|
282 |
+
|
283 |
+
lora_path = load_lora_weights(repo_id, weights_file)
|
284 |
+
if lora_path:
|
285 |
+
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
286 |
+
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
287 |
+
print(f"Successfully loaded: {lora_path} with scale {lora_scale}")
|
288 |
+
current_lora = lora_to_use
|
289 |
+
else:
|
290 |
+
print(f"Failed to load LoRA from {repo_id}")
|
291 |
+
gr.Warning(f"Failed to load {lora_to_use.get('title', 'style')}. Please try a different art style.")
|
292 |
+
return None, seed, gr.update(visible=False)
|
293 |
+
|
294 |
+
except Exception as e:
|
295 |
+
print(f"Error loading LoRA: {e}")
|
296 |
+
# Continue without LoRA
|
297 |
else:
|
298 |
+
if lora_to_use:
|
299 |
+
print(f"Using already loaded LoRA: {lora_to_use.get('repo', 'unknown')}")
|
300 |
+
|
301 |
+
try:
|
302 |
+
# Convert image to RGB
|
303 |
+
input_image = input_image.convert("RGB")
|
304 |
+
except Exception as e:
|
305 |
+
print(f"Error processing image: {e}")
|
306 |
+
gr.Warning("Error processing the uploaded image. Please try a different photo. 📸")
|
307 |
+
return None, seed, gr.update(visible=False)
|
308 |
+
|
309 |
+
# Check if LoRA is selected
|
310 |
+
if lora_to_use is None:
|
311 |
+
gr.Warning("Please select an art style from the gallery first! 🎨")
|
312 |
+
return None, seed, gr.update(visible=False)
|
313 |
+
|
314 |
+
# Add trigger word to prompt
|
315 |
+
trigger_word = lora_to_use.get("trigger_word", "")
|
316 |
+
|
317 |
+
# Special handling for different art styles
|
318 |
+
if trigger_word == "ghibli":
|
319 |
+
prompt = f"Create a Studio Ghibli anime style portrait of the person in the photo, {prompt}. Maintain the facial identity while transforming into whimsical anime art style."
|
320 |
+
elif trigger_word == "homer":
|
321 |
+
prompt = f"Paint the person in Winslow Homer's American realist style, {prompt}. Keep facial features while applying watercolor and marine art techniques."
|
322 |
+
elif trigger_word == "gogh":
|
323 |
+
prompt = f"Transform the portrait into Van Gogh's post-impressionist style with swirling brushstrokes, {prompt}. Maintain facial identity with expressive colors."
|
324 |
+
elif trigger_word == "Cezanne":
|
325 |
+
prompt = f"Render the person in Paul Cézanne's geometric post-impressionist style, {prompt}. Keep facial structure while applying structured brushwork."
|
326 |
+
elif trigger_word == "Renoir":
|
327 |
+
prompt = f"Paint the portrait in Pierre-Auguste Renoir's impressionist style with soft light, {prompt}. Maintain identity with luminous skin tones."
|
328 |
+
elif trigger_word == "claude monet":
|
329 |
+
prompt = f"Create an impressionist portrait in Claude Monet's style with visible brushstrokes, {prompt}. Keep facial features while using light and color."
|
330 |
+
elif trigger_word == "fantasy":
|
331 |
+
prompt = f"Transform into an epic fantasy character portrait, {prompt}. Maintain facial identity while adding magical and fantastical elements."
|
332 |
+
elif trigger_word == ", How2Draw":
|
333 |
+
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
|
334 |
+
elif trigger_word == ", video game screenshot in the style of THSMS":
|
335 |
+
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
|
336 |
+
else:
|
337 |
+
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
|
338 |
+
|
339 |
+
try:
|
340 |
+
image = pipe(
|
341 |
+
image=input_image,
|
342 |
+
prompt=prompt,
|
343 |
+
guidance_scale=guidance_scale,
|
344 |
+
generator=torch.Generator().manual_seed(seed),
|
345 |
+
).images[0]
|
346 |
+
|
347 |
+
return image, seed, gr.update(visible=True)
|
348 |
+
|
349 |
+
except Exception as e:
|
350 |
+
print(f"Error during inference: {e}")
|
351 |
+
return None, seed, gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
353 |
+
# Create Gradio interface
|
354 |
+
with gr.Blocks(css=css) as demo:
|
355 |
+
gr_flux_loras = gr.State(value=flux_loras_raw)
|
356 |
+
|
357 |
+
title = gr.HTML(
|
358 |
+
"""<h1>FLUX Kontex Super LoRAs🖖</h1>""",
|
359 |
)
|
360 |
+
|
361 |
+
selected_state = gr.State(value=None)
|
362 |
+
custom_loaded_lora = gr.State(value=None)
|
363 |
+
|
364 |
+
with gr.Row(elem_id="main_app"):
|
365 |
+
with gr.Column(scale=4, elem_id="box_column"):
|
366 |
+
with gr.Group(elem_id="gallery_box"):
|
367 |
+
input_image = gr.Image(label="Upload your portrait photo 📸", type="pil", height=300)
|
368 |
+
|
369 |
+
gallery = gr.Gallery(
|
370 |
+
label="Choose Your Art Style",
|
371 |
+
allow_preview=False,
|
372 |
+
columns=3,
|
373 |
+
elem_id="gallery",
|
374 |
+
show_share_button=False,
|
375 |
+
height=400
|
376 |
+
)
|
377 |
+
|
378 |
+
custom_model = gr.Textbox(
|
379 |
+
label="🔗 Or use a custom LoRA from HuggingFace",
|
380 |
+
placeholder="e.g., username/lora-name",
|
381 |
+
visible=True
|
382 |
+
)
|
383 |
+
custom_model_card = gr.HTML(visible=False)
|
384 |
+
custom_model_button = gr.Button("❌ Remove custom LoRA", visible=False)
|
385 |
+
|
386 |
+
with gr.Column(scale=5):
|
387 |
+
with gr.Row():
|
388 |
+
prompt = gr.Textbox(
|
389 |
+
label="Additional Details (optional)",
|
390 |
+
show_label=False,
|
391 |
+
lines=1,
|
392 |
+
max_lines=1,
|
393 |
+
placeholder="Describe additional details, e.g., 'wearing a red hat' or 'smiling'",
|
394 |
+
elem_id="prompt"
|
395 |
+
)
|
396 |
+
run_button = gr.Button("Generate ✨", elem_id="run_button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
+
result = gr.Image(label="Your Artistic Portrait", interactive=False)
|
399 |
+
reuse_button = gr.Button("🔄 Reuse this image", visible=False)
|
|
|
|
|
|
|
400 |
|
401 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
402 |
+
lora_scale = gr.Slider(
|
403 |
+
label="Style Strength",
|
404 |
+
minimum=0,
|
405 |
+
maximum=2,
|
406 |
+
step=0.1,
|
407 |
+
value=1.0,
|
408 |
+
info="How strongly to apply the art style (1.0 = balanced)"
|
409 |
+
)
|
410 |
+
seed = gr.Slider(
|
411 |
+
label="Random Seed",
|
412 |
+
minimum=0,
|
413 |
+
maximum=MAX_SEED,
|
414 |
+
step=1,
|
415 |
+
value=0,
|
416 |
+
info="Set to 0 for random results"
|
417 |
+
)
|
418 |
+
randomize_seed = gr.Checkbox(label="🎲 Randomize seed for each generation", value=True)
|
419 |
+
guidance_scale = gr.Slider(
|
420 |
+
label="Image Guidance",
|
421 |
+
minimum=1,
|
422 |
+
maximum=10,
|
423 |
+
step=0.1,
|
424 |
+
value=2.5,
|
425 |
+
info="How closely to follow the input image (lower = more creative)"
|
426 |
+
)
|
427 |
+
|
428 |
+
prompt_title = gr.Markdown(
|
429 |
+
value="### 🎨 Select an art style from the gallery",
|
430 |
+
visible=True,
|
431 |
+
elem_id="selected_lora",
|
432 |
+
)
|
433 |
+
|
434 |
+
# Event handlers
|
435 |
+
custom_model.input(
|
436 |
+
fn=load_custom_lora,
|
437 |
+
inputs=[custom_model],
|
438 |
+
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
|
439 |
+
)
|
440 |
+
|
441 |
+
custom_model_button.click(
|
442 |
+
fn=remove_custom_lora,
|
443 |
+
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
|
444 |
+
)
|
445 |
+
|
446 |
+
gallery.select(
|
447 |
+
fn=update_selection,
|
448 |
+
inputs=[gr_flux_loras],
|
449 |
+
outputs=[prompt_title, prompt, selected_state],
|
450 |
+
show_progress=False
|
451 |
+
)
|
452 |
+
|
453 |
+
gr.on(
|
454 |
+
triggers=[run_button.click, prompt.submit],
|
455 |
+
fn=infer_with_lora_wrapper,
|
456 |
+
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
|
457 |
+
outputs=[result, seed, reuse_button]
|
458 |
+
)
|
459 |
+
|
460 |
+
reuse_button.click(
|
461 |
+
fn=lambda image: image,
|
462 |
+
inputs=[result],
|
463 |
+
outputs=[input_image]
|
464 |
+
)
|
465 |
+
|
466 |
+
# Initialize gallery
|
467 |
+
demo.load(
|
468 |
+
fn=classify_gallery,
|
469 |
+
inputs=[gr_flux_loras],
|
470 |
+
outputs=[gallery, gr_flux_loras]
|
471 |
+
)
|
472 |
+
|
473 |
+
demo.queue(default_concurrency_limit=None)
|
474 |
+
demo.launch()
|