prithivMLmods commited on
Commit
634382f
·
verified ·
1 Parent(s): 0426d9f

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -166
app.py DELETED
@@ -1,166 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import spaces
4
- import torch
5
- import random
6
- from PIL import Image
7
-
8
- from diffusers import FluxKontextPipeline
9
- from diffusers.utils import load_image
10
-
11
- MAX_SEED = np.iinfo(np.int32).max
12
-
13
- pipe = FluxKontextPipeline.from_pretrained("prithivMLmods/Flux.1-Fusion-KonKrea", torch_dtype=torch.bfloat16).to("cuda")
14
-
15
- @spaces.GPU
16
- def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
17
- """
18
- Perform image editing using the FLUX.1 Kontext pipeline.
19
-
20
- This function takes an input image and a text prompt to generate a modified version
21
- of the image based on the provided instructions. It uses the FLUX.1 Kontext model
22
- for contextual image editing tasks.
23
-
24
- Args:
25
- input_image (PIL.Image.Image): The input image to be edited. Will be converted
26
- to RGB format if not already in that format.
27
- prompt (str): Text description of the desired edit to apply to the image.
28
- Examples: "Remove glasses", "Add a hat", "Change background to beach".
29
- seed (int, optional): Random seed for reproducible generation. Defaults to 42.
30
- Must be between 0 and MAX_SEED (2^31 - 1).
31
- randomize_seed (bool, optional): If True, generates a random seed instead of
32
- using the provided seed value. Defaults to False.
33
- guidance_scale (float, optional): Controls how closely the model follows the
34
- prompt. Higher values mean stronger adherence to the prompt but may reduce
35
- image quality. Range: 1.0-10.0. Defaults to 2.5.
36
- steps (int, optional): Controls how many steps to run the diffusion model for.
37
- Range: 1-30. Defaults to 28.
38
- progress (gr.Progress, optional): Gradio progress tracker for monitoring
39
- generation progress. Defaults to gr.Progress(track_tqdm=True).
40
-
41
- Returns:
42
- tuple: A 3-tuple containing:
43
- - PIL.Image.Image: The generated/edited image
44
- - int: The seed value used for generation (useful when randomize_seed=True)
45
- - gr.update: Gradio update object to make the reuse button visible
46
-
47
- Example:
48
- >>> edited_image, used_seed, button_update = infer(
49
- ... input_image=my_image,
50
- ... prompt="Add sunglasses",
51
- ... seed=123,
52
- ... randomize_seed=False,
53
- ... guidance_scale=2.5
54
- ... )
55
- """
56
- if randomize_seed:
57
- seed = random.randint(0, MAX_SEED)
58
-
59
- if input_image:
60
- input_image = input_image.convert("RGB")
61
- image = pipe(
62
- image=input_image,
63
- prompt=prompt,
64
- guidance_scale=guidance_scale,
65
- width = input_image.size[0],
66
- height = input_image.size[1],
67
- num_inference_steps=steps,
68
- generator=torch.Generator().manual_seed(seed),
69
- ).images[0]
70
- else:
71
- image = pipe(
72
- prompt=prompt,
73
- guidance_scale=guidance_scale,
74
- num_inference_steps=steps,
75
- generator=torch.Generator().manual_seed(seed),
76
- ).images[0]
77
- return image, seed, gr.Button(visible=True)
78
-
79
- @spaces.GPU
80
- def infer_example(input_image, prompt):
81
- image, seed, _ = infer(input_image, prompt)
82
- return image, seed
83
-
84
- css="""
85
- #col-container {
86
- margin: 0 auto;
87
- max-width: 960px;
88
- }
89
- """
90
-
91
- with gr.Blocks(css=css) as demo:
92
-
93
- with gr.Column(elem_id="col-container"):
94
- gr.Markdown(f"""# Flux.1 Fusion KonKrea
95
- Image editing and manipulation model guidance-distilled from Flux.1-Fusion-KonKrea, [[model]](https://huggingface.co/prithivMLmods/Flux.1-Fusion-KonKrea)
96
- """)
97
- with gr.Row():
98
- with gr.Column():
99
- input_image = gr.Image(label="Upload the image for editing", type="pil")
100
- with gr.Row():
101
- prompt = gr.Text(
102
- label="Prompt",
103
- show_label=False,
104
- max_lines=1,
105
- placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
106
- container=False,
107
- )
108
- run_button = gr.Button("Run", scale=0)
109
- with gr.Accordion("Advanced Settings", open=False):
110
-
111
- seed = gr.Slider(
112
- label="Seed",
113
- minimum=0,
114
- maximum=MAX_SEED,
115
- step=1,
116
- value=0,
117
- )
118
-
119
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
120
-
121
- guidance_scale = gr.Slider(
122
- label="Guidance Scale",
123
- minimum=1,
124
- maximum=10,
125
- step=0.1,
126
- value=2.5,
127
- )
128
-
129
- steps = gr.Slider(
130
- label="Steps",
131
- minimum=1,
132
- maximum=30,
133
- value=28,
134
- step=1
135
- )
136
-
137
- with gr.Column():
138
- result = gr.Image(label="Result", show_label=False, interactive=False)
139
- reuse_button = gr.Button("Reuse this image", visible=False)
140
-
141
-
142
- examples = gr.Examples(
143
- examples=[
144
- ["images/14.png", "Change the cat’s eyes to blue."],
145
- ["images/15.png", "Change the weather to rainy."],
146
- ["images/16.png", "Change the hair color to gray."]
147
- ],
148
- inputs=[input_image, prompt],
149
- outputs=[result, seed],
150
- fn=infer_example,
151
- cache_examples="lazy"
152
- )
153
-
154
- gr.on(
155
- triggers=[run_button.click, prompt.submit],
156
- fn = infer,
157
- inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
158
- outputs = [result, seed, reuse_button]
159
- )
160
- reuse_button.click(
161
- fn = lambda image: image,
162
- inputs = [result],
163
- outputs = [input_image]
164
- )
165
-
166
- demo.launch(mcp_server=True)