File size: 19,667 Bytes
2e94d15
 
 
764dc74
2e94d15
 
 
 
 
 
 
764dc74
 
2e94d15
 
764dc74
 
 
 
 
 
 
 
 
58b79f9
 
764dc74
 
58b79f9
 
764dc74
 
2e94d15
764dc74
58b79f9
764dc74
58b79f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764dc74
2e94d15
 
 
 
764dc74
2e94d15
 
 
 
764dc74
2e94d15
 
 
 
764dc74
2e94d15
 
 
 
764dc74
2e94d15
 
 
 
 
764dc74
 
 
 
 
 
 
 
 
 
 
2e94d15
764dc74
 
 
 
 
 
 
 
 
2e94d15
764dc74
 
 
 
2e94d15
764dc74
2e94d15
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
 
764dc74
2e94d15
 
 
 
 
 
 
764dc74
2e94d15
 
764dc74
2e94d15
 
764dc74
 
2e94d15
764dc74
 
2e94d15
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
 
 
 
 
 
764dc74
 
2e94d15
764dc74
2e94d15
 
764dc74
2e94d15
764dc74
2e94d15
 
764dc74
2e94d15
764dc74
2e94d15
764dc74
 
 
 
 
2e94d15
764dc74
 
 
 
2e94d15
58b79f9
2e94d15
 
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
 
 
 
 
764dc74
 
2e94d15
764dc74
2e94d15
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
 
764dc74
 
 
 
 
2e94d15
 
 
 
 
 
 
764dc74
 
2e94d15
 
764dc74
2e94d15
 
 
764dc74
 
2e94d15
 
 
 
 
764dc74
 
2e94d15
 
 
 
 
764dc74
 
 
2e94d15
764dc74
 
 
 
 
 
 
 
2e94d15
 
764dc74
2e94d15
764dc74
2e94d15
 
 
 
 
 
 
764dc74
 
 
 
 
 
2e94d15
 
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b79f9
764dc74
 
 
 
 
 
 
 
 
 
 
 
 
 
2e94d15
764dc74
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import random
import uuid
from typing import Tuple, Dict
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

DESCRIPTIONz= """## SDXL-LoRA-DLC ⚑
Select a base model, choose a LoRA, and generate images!
"""

# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_STYLE_NAME = "3840 x 2160"
USE_TORCH_COMPILE = False # Set to True if you want to try torch compile (might be faster but requires compatible hardware/drivers)
ENABLE_CPU_OFFLOAD = False # Set to True to offload parts of the model to CPU (saves VRAM but slower)

# --- Model Definitions ---
# Dictionary mapping user-friendly names to Hugging Face model IDs
pipelines_info = {
    "RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
    # Add more SDXL base models here if desired
    # "Another SDXL Model": "stabilityai/stable-diffusion-xl-base-1.0", # Example
}

# Dictionary to cache loaded pipelines
loaded_pipelines: Dict[str, StableDiffusionXLPipeline] = {}

# --- LoRA Definitions ---
LORA_OPTIONS = {
    # Name: (HuggingFace Repo ID, Weight Filename, Adapter Name)
    "Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
    "Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
    "Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
    "Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
    "Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
    "Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
    "Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
    "Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
    "Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
    "Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
    "Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
    "Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
    "Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}

# --- Style Definitions ---
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "worst quality, low quality", # Added basic negative prompt
    },
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())

# --- Utility Functions ---
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    # Get the base style prompt and negative prompt
    base_p, base_n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])

    # Combine the base negative prompt with the user's negative prompt
    # Ensure user's negative prompt is appended correctly
    if negative and base_n:
        combined_n = f"{base_n}, {negative}"
    elif negative:
        combined_n = negative
    else:
        combined_n = base_n

    # Apply the positive prompt template
    final_p = base_p.replace("{prompt}", positive)

    return final_p, combined_n

def load_predefined_images():
    # Ensure the assets directory and images exist
    asset_dir = "assets"
    image_files = [
        "1.png", "2.png", "3.png",
        "4.png", "5.png", "6.png",
        "7.png", "8.png", "9.png",
    ]
    predefined_images = []
    if os.path.exists(asset_dir):
        for img_file in image_files:
            img_path = os.path.join(asset_dir, img_file)
            if os.path.exists(img_path):
                predefined_images.append(img_path)
            else:
                print(f"Warning: Predefined image not found: {img_path}")
    else:
         print(f"Warning: Asset directory not found: {asset_dir}")
    # If no images were found, return None or an empty list
    # to avoid errors in gr.Gallery
    return predefined_images if predefined_images else None


# --- Core Generation Function ---
@spaces.GPU(duration=180, enable_queue=True)
def generate(
    selected_base_model_name: str, # New input for base model selection
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 4, # Lightning models use fewer steps
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    lora_choice: str = "Realism (face/character)πŸ‘¦πŸ»",
    progress=gr.Progress(track_tqdm=True),
):
    if not torch.cuda.is_available():
        raise gr.Error("GPU not available. This Space requires a GPU to run.")

    seed = int(randomize_seed_fn(seed, randomize_seed))
    torch.manual_seed(seed) # Ensure reproducibility if seed is fixed

    # --- Pipeline Loading and Caching ---
    pipe = None
    if selected_base_model_name in loaded_pipelines:
        print(f"Using cached pipeline: {selected_base_model_name}")
        pipe = loaded_pipelines[selected_base_model_name]
    else:
        print(f"Loading pipeline: {selected_base_model_name}")
        model_id = pipelines_info[selected_base_model_name]
        pipe = StableDiffusionXLPipeline.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16" if torch.cuda.is_available() else None # Use fp16 variant if available on GPU
        )

        # Apply optimizations based on flags
        if ENABLE_CPU_OFFLOAD:
            print("Enabling CPU Offload")
            pipe.enable_model_cpu_offload()
        else:
             pipe.to("cuda") # Default: move entire pipeline to GPU

        # Configure scheduler (important for Lightning models)
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

        # Load ALL LoRAs onto this newly loaded pipeline instance
        print(f"Loading LoRAs for {selected_base_model_name}...")
        for lora_name, (model_repo, weight_file, adapter_tag) in LORA_OPTIONS.items():
             try:
                 print(f"  Loading LoRA: {lora_name} ({adapter_tag})")
                 pipe.load_lora_weights(model_repo, weight_name=weight_file, adapter_name=adapter_tag)
             except Exception as e:
                 print(f"  Failed to load LoRA {lora_name}: {e}")
                 # Optionally raise an error or continue without this LoRA
                 # raise gr.Error(f"Failed to load LoRA {lora_name}. Check repo/file names.")

        if USE_TORCH_COMPILE:
            print("Attempting to compile UNet (may take time)...")
            try:
                pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
                print("UNet compiled successfully.")
            except Exception as e:
                print(f"Torch compile failed: {e}. Running without compilation.")

        # Cache the fully loaded and configured pipeline
        loaded_pipelines[selected_base_model_name] = pipe
        print(f"Pipeline {selected_base_model_name} loaded and cached.")

    # --- Prompt Styling ---
    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt if use_negative_prompt else "")

    # --- LoRA Selection ---
    if lora_choice not in LORA_OPTIONS:
         raise gr.Error(f"Selected LoRA '{lora_choice}' not found in options.")

    _lora_repo, _lora_weight, lora_adapter_name = LORA_OPTIONS[lora_choice]
    print(f"Activating LoRA: {lora_choice} (Adapter: {lora_adapter_name})")
    pipe.set_adapters(lora_adapter_name)
    # Note: LoRA weight/scale is often handled within the pipeline or during loading.
    # If you need adjustable LoRA scale, you might need `add_weighted_adapter` or similar.
    # For simplicity here, we assume the default scale is used.
    # cross_attention_kwargs={"scale": 0.8} # Example if you need to set scale explicitly

    # --- Image Generation ---
    print("Starting image generation...")
    generator = torch.Generator("cuda").manual_seed(seed)
    images = pipe(
        prompt=positive_prompt,
        negative_prompt=effective_negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps, # Use steps suitable for Lightning
        generator=generator,
        num_images_per_prompt=1,
        # cross_attention_kwargs=cross_attention_kwargs, # Add if scale needed
        output_type="pil",
    ).images

    image_paths = [save_image(img) for img in images]
    print("Image generation complete.")
    return image_paths, seed

# --- Gradio UI ---
css = '''
.gradio-container{max-width: 860px !important; margin: auto;}
h1{text-align:center}
.gr-prose { text-align: center; }
#model-select-row { justify-content: center; } /* Center dropdowns */
/* Make gallery taller */
#result_gallery .h-\[400px\] {
    height: 600px !important; /* Adjust height as needed */
}
#predefined_gallery .h-\[400px\] {
    height: 300px !important; /* Adjust height as needed */
}
footer { visibility: hidden }
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTIONz)

    with gr.Row(elem_id="model-select-row"):
         model_selector = gr.Dropdown(
             label="Select Base Model",
             choices=list(pipelines_info.keys()),
             value=list(pipelines_info.keys())[0], # Default to the first model
             scale=1
         )
         model_choice = gr.Dropdown(
             label="Select LoRA Style",
             choices=list(LORA_OPTIONS.keys()),
             value="Realism (face/character)πŸ‘¦πŸ»", # Default LoRA
             scale=1
         )

    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2, # Allow slightly more room for prompt
                placeholder="Enter your prompt (e.g., 'Astronaut riding a horse')",
                container=False,
                scale=5, # Make prompt input wider
            )
            run_button = gr.Button("Generate", scale=1, variant="primary") # Make button stand out

    # Use Tabs for Main Result and Examples/Gallery
    with gr.Tabs():
        with gr.TabItem("Result", id="result_tab"):
             result = gr.Gallery(
                 label="Generated Image", elem_id="result_gallery",
                 columns=1, preview=True, show_label=False, height=600 # Make gallery taller
             )
             # Display the seed used for the generated image
             used_seed = gr.Number(label="Seed Used", interactive=False)

        with gr.TabItem("Examples & Predefined Gallery", id="examples_tab"):
            gr.Markdown("### Prompt Examples")
            gr.Examples(
                examples=[
                    "cinematic photo, a man sitting on a chair in a dark room, realistic", # Realism example
                    "pixar style 3d render of a cute cat astronaut exploring mars", # Pixar example
                    "studio photography, high fashion model wearing a futuristic silver hoodie, dramatic lighting", # Photoshoot/Clothing example
                    "minimalist vector art illustration of a mountain range at sunset, liquid style", # Minimalist/Liquid example
                    "pencil sketch drawing of an old wise wizard with a long beard", # Pencil Art example
                ],
                inputs=[prompt], # Only update the prompt field from examples
                outputs=[result, used_seed], # Define outputs for example generation
                fn=lambda p: generate( # Need a lambda to pass default values for other args
                    selected_base_model_name=list(pipelines_info.keys())[0], # Use default model for examples
                    prompt=p,
                    lora_choice="Realism (face/character)πŸ‘¦πŸ»", # Use default LoRA for examples
                    # Add other default args from 'generate' signature if needed
                    negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    use_negative_prompt=True,
                    seed=0, # Or make examples use random seed?
                    width=1024,
                    height=1024,
                    guidance_scale=3.0,
                    num_inference_steps=4,
                    randomize_seed=True, # Randomize seed for examples
                    style_name=DEFAULT_STYLE_NAME,
                ),
                cache_examples=False, # Recalculate examples if needed
                label="Click an example to generate"
            )
            gr.Markdown("### Predefined Image Gallery")
            predefined_gallery = gr.Gallery(
                 label="Image Gallery", elem_id="predefined_gallery",
                 columns=3, show_label=False, value=load_predefined_images(), height=300
            )


    with gr.Accordion("βš™οΈ Advanced Settings", open=False):
        style_selection = gr.Radio(
            show_label=True,
            container=True,
            interactive=True,
            choices=STYLE_NAMES,
            value=DEFAULT_STYLE_NAME,
            label="Image Quality Style",
        )
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use Negative Prompt", value=True)
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)

        negative_prompt = gr.Text(
            label="Negative Prompt",
            max_lines=2,
            value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, worst quality, low quality",
            placeholder="Enter concepts to avoid...",
            visible=True, # Initially visible, controlled by checkbox change
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True, # Initially visible, maybe hide if randomize is checked?
            interactive=True
        )

        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=1536, # Adjusted max based on typical SDXL use
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=1536, # Adjusted max based on typical SDXL use
                step=64,
                value=1024,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale (CFG)",
                minimum=0.0,
                maximum=10.0, # Lightning models often use low CFG
                step=0.1,
                value=1.5, # Default low CFG for Lightning
            )
            num_inference_steps = gr.Slider(
                label="Inference Steps",
                minimum=1,
                maximum=20, # Lightning models need very few steps
                step=1,
                value=4, # Default steps for Lightning
            )

    # --- Event Listeners ---

    # Show/hide negative prompt input based on checkbox
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    # Show/hide seed slider based on randomize checkbox
    randomize_seed.change(
        fn=lambda x: gr.update(interactive=not x), # Make slider non-interactive if randomizing
        inputs=randomize_seed,
        outputs=seed,
        api_name=False,
    )

    # Main generation trigger
    inputs_list = [
        model_selector, # Add model selector
        prompt,
        negative_prompt,
        use_negative_prompt,
        seed,
        width,
        height,
        guidance_scale,
        num_inference_steps, # Add steps slider
        randomize_seed,
        style_selection,
        model_choice, # This is the LoRA choice dropdown
    ]
    outputs_list = [result, used_seed] # Output gallery and the seed number

    prompt.submit(
        fn=generate,
        inputs=inputs_list,
        outputs=outputs_list,
        api_name="run_prompt_submit" # Optional: Define API name
    )
    run_button.click(
        fn=generate,
        inputs=inputs_list,
        outputs=outputs_list,
        api_name="run_button_click" # Optional: Define API name
    )

# --- Launch ---
if __name__ == "__main__":
    if not torch.cuda.is_available():
        print("Warning: No CUDA GPU detected. Running on CPU will be extremely slow or may fail.")
        DESCRIPTIONz += "\n<p>⚠️<b>WARNING: No GPU detected. Running on CPU is very slow and may not work reliably.</b> Consider using a GPU instance.</p>"
        # Optionally disable parts of the UI or exit if CPU is unacceptable
        # exit()

    # Ensure asset directory exists for predefined images (optional but good practice)
    if not os.path.exists("assets"):
        print("Warning: 'assets' directory not found. Predefined images will not load.")

    demo.queue(max_size=20).launch(debug=False) # Set debug=True for more logs if needed