Spaces:
Running
on
Zero
Running
on
Zero
Delete controlnet_flux.py
Browse files- controlnet_flux.py +0 -418
controlnet_flux.py
DELETED
|
@@ -1,418 +0,0 @@
|
|
| 1 |
-
from dataclasses import dataclass
|
| 2 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
|
| 7 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 8 |
-
from diffusers.loaders import PeftAdapterMixin
|
| 9 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 10 |
-
from diffusers.models.attention_processor import AttentionProcessor
|
| 11 |
-
from diffusers.utils import (
|
| 12 |
-
USE_PEFT_BACKEND,
|
| 13 |
-
is_torch_version,
|
| 14 |
-
logging,
|
| 15 |
-
scale_lora_layers,
|
| 16 |
-
unscale_lora_layers,
|
| 17 |
-
)
|
| 18 |
-
from diffusers.models.controlnet import BaseOutput, zero_module
|
| 19 |
-
from diffusers.models.embeddings import (
|
| 20 |
-
CombinedTimestepGuidanceTextProjEmbeddings,
|
| 21 |
-
CombinedTimestepTextProjEmbeddings,
|
| 22 |
-
)
|
| 23 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 24 |
-
from transformer_flux import (
|
| 25 |
-
EmbedND,
|
| 26 |
-
FluxSingleTransformerBlock,
|
| 27 |
-
FluxTransformerBlock,
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
@dataclass
|
| 35 |
-
class FluxControlNetOutput(BaseOutput):
|
| 36 |
-
controlnet_block_samples: Tuple[torch.Tensor]
|
| 37 |
-
controlnet_single_block_samples: Tuple[torch.Tensor]
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 41 |
-
_supports_gradient_checkpointing = True
|
| 42 |
-
|
| 43 |
-
@register_to_config
|
| 44 |
-
def __init__(
|
| 45 |
-
self,
|
| 46 |
-
patch_size: int = 1,
|
| 47 |
-
in_channels: int = 64,
|
| 48 |
-
num_layers: int = 19,
|
| 49 |
-
num_single_layers: int = 38,
|
| 50 |
-
attention_head_dim: int = 128,
|
| 51 |
-
num_attention_heads: int = 24,
|
| 52 |
-
joint_attention_dim: int = 4096,
|
| 53 |
-
pooled_projection_dim: int = 768,
|
| 54 |
-
guidance_embeds: bool = False,
|
| 55 |
-
axes_dims_rope: List[int] = [16, 56, 56],
|
| 56 |
-
extra_condition_channels: int = 1 * 4,
|
| 57 |
-
):
|
| 58 |
-
super().__init__()
|
| 59 |
-
self.out_channels = in_channels
|
| 60 |
-
self.inner_dim = num_attention_heads * attention_head_dim
|
| 61 |
-
|
| 62 |
-
self.pos_embed = EmbedND(
|
| 63 |
-
dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
|
| 64 |
-
)
|
| 65 |
-
text_time_guidance_cls = (
|
| 66 |
-
CombinedTimestepGuidanceTextProjEmbeddings
|
| 67 |
-
if guidance_embeds
|
| 68 |
-
else CombinedTimestepTextProjEmbeddings
|
| 69 |
-
)
|
| 70 |
-
self.time_text_embed = text_time_guidance_cls(
|
| 71 |
-
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 75 |
-
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
| 76 |
-
|
| 77 |
-
self.transformer_blocks = nn.ModuleList(
|
| 78 |
-
[
|
| 79 |
-
FluxTransformerBlock(
|
| 80 |
-
dim=self.inner_dim,
|
| 81 |
-
num_attention_heads=num_attention_heads,
|
| 82 |
-
attention_head_dim=attention_head_dim,
|
| 83 |
-
)
|
| 84 |
-
for _ in range(num_layers)
|
| 85 |
-
]
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
self.single_transformer_blocks = nn.ModuleList(
|
| 89 |
-
[
|
| 90 |
-
FluxSingleTransformerBlock(
|
| 91 |
-
dim=self.inner_dim,
|
| 92 |
-
num_attention_heads=num_attention_heads,
|
| 93 |
-
attention_head_dim=attention_head_dim,
|
| 94 |
-
)
|
| 95 |
-
for _ in range(num_single_layers)
|
| 96 |
-
]
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
# controlnet_blocks
|
| 100 |
-
self.controlnet_blocks = nn.ModuleList([])
|
| 101 |
-
for _ in range(len(self.transformer_blocks)):
|
| 102 |
-
self.controlnet_blocks.append(
|
| 103 |
-
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
self.controlnet_single_blocks = nn.ModuleList([])
|
| 107 |
-
for _ in range(len(self.single_transformer_blocks)):
|
| 108 |
-
self.controlnet_single_blocks.append(
|
| 109 |
-
zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
self.controlnet_x_embedder = zero_module(
|
| 113 |
-
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
self.gradient_checkpointing = False
|
| 117 |
-
|
| 118 |
-
@property
|
| 119 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 120 |
-
def attn_processors(self):
|
| 121 |
-
r"""
|
| 122 |
-
Returns:
|
| 123 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 124 |
-
indexed by its weight name.
|
| 125 |
-
"""
|
| 126 |
-
# set recursively
|
| 127 |
-
processors = {}
|
| 128 |
-
|
| 129 |
-
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 130 |
-
if hasattr(module, "get_processor"):
|
| 131 |
-
processors[f"{name}.processor"] = module.get_processor()
|
| 132 |
-
|
| 133 |
-
for sub_name, child in module.named_children():
|
| 134 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 135 |
-
|
| 136 |
-
return processors
|
| 137 |
-
|
| 138 |
-
for name, module in self.named_children():
|
| 139 |
-
fn_recursive_add_processors(name, module, processors)
|
| 140 |
-
|
| 141 |
-
return processors
|
| 142 |
-
|
| 143 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 144 |
-
def set_attn_processor(self, processor):
|
| 145 |
-
r"""
|
| 146 |
-
Sets the attention processor to use to compute attention.
|
| 147 |
-
|
| 148 |
-
Parameters:
|
| 149 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 150 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 151 |
-
for **all** `Attention` layers.
|
| 152 |
-
|
| 153 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 154 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
| 155 |
-
|
| 156 |
-
"""
|
| 157 |
-
count = len(self.attn_processors.keys())
|
| 158 |
-
|
| 159 |
-
if isinstance(processor, dict) and len(processor) != count:
|
| 160 |
-
raise ValueError(
|
| 161 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 162 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 166 |
-
if hasattr(module, "set_processor"):
|
| 167 |
-
if not isinstance(processor, dict):
|
| 168 |
-
module.set_processor(processor)
|
| 169 |
-
else:
|
| 170 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
| 171 |
-
|
| 172 |
-
for sub_name, child in module.named_children():
|
| 173 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 174 |
-
|
| 175 |
-
for name, module in self.named_children():
|
| 176 |
-
fn_recursive_attn_processor(name, module, processor)
|
| 177 |
-
|
| 178 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 179 |
-
if hasattr(module, "gradient_checkpointing"):
|
| 180 |
-
module.gradient_checkpointing = value
|
| 181 |
-
|
| 182 |
-
@classmethod
|
| 183 |
-
def from_transformer(
|
| 184 |
-
cls,
|
| 185 |
-
transformer,
|
| 186 |
-
num_layers: int = 4,
|
| 187 |
-
num_single_layers: int = 10,
|
| 188 |
-
attention_head_dim: int = 128,
|
| 189 |
-
num_attention_heads: int = 24,
|
| 190 |
-
load_weights_from_transformer=True,
|
| 191 |
-
):
|
| 192 |
-
config = transformer.config
|
| 193 |
-
config["num_layers"] = num_layers
|
| 194 |
-
config["num_single_layers"] = num_single_layers
|
| 195 |
-
config["attention_head_dim"] = attention_head_dim
|
| 196 |
-
config["num_attention_heads"] = num_attention_heads
|
| 197 |
-
|
| 198 |
-
controlnet = cls(**config)
|
| 199 |
-
|
| 200 |
-
if load_weights_from_transformer:
|
| 201 |
-
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
| 202 |
-
controlnet.time_text_embed.load_state_dict(
|
| 203 |
-
transformer.time_text_embed.state_dict()
|
| 204 |
-
)
|
| 205 |
-
controlnet.context_embedder.load_state_dict(
|
| 206 |
-
transformer.context_embedder.state_dict()
|
| 207 |
-
)
|
| 208 |
-
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
| 209 |
-
controlnet.transformer_blocks.load_state_dict(
|
| 210 |
-
transformer.transformer_blocks.state_dict(), strict=False
|
| 211 |
-
)
|
| 212 |
-
controlnet.single_transformer_blocks.load_state_dict(
|
| 213 |
-
transformer.single_transformer_blocks.state_dict(), strict=False
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
controlnet.controlnet_x_embedder = zero_module(
|
| 217 |
-
controlnet.controlnet_x_embedder
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
return controlnet
|
| 221 |
-
|
| 222 |
-
def forward(
|
| 223 |
-
self,
|
| 224 |
-
hidden_states: torch.Tensor,
|
| 225 |
-
controlnet_cond: torch.Tensor,
|
| 226 |
-
conditioning_scale: float = 1.0,
|
| 227 |
-
encoder_hidden_states: torch.Tensor = None,
|
| 228 |
-
pooled_projections: torch.Tensor = None,
|
| 229 |
-
timestep: torch.LongTensor = None,
|
| 230 |
-
img_ids: torch.Tensor = None,
|
| 231 |
-
txt_ids: torch.Tensor = None,
|
| 232 |
-
guidance: torch.Tensor = None,
|
| 233 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 234 |
-
return_dict: bool = True,
|
| 235 |
-
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 236 |
-
"""
|
| 237 |
-
The [`FluxTransformer2DModel`] forward method.
|
| 238 |
-
|
| 239 |
-
Args:
|
| 240 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 241 |
-
Input `hidden_states`.
|
| 242 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 243 |
-
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 244 |
-
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 245 |
-
from the embeddings of input conditions.
|
| 246 |
-
timestep ( `torch.LongTensor`):
|
| 247 |
-
Used to indicate denoising step.
|
| 248 |
-
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 249 |
-
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 250 |
-
joint_attention_kwargs (`dict`, *optional*):
|
| 251 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 252 |
-
`self.processor` in
|
| 253 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 254 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 255 |
-
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 256 |
-
tuple.
|
| 257 |
-
|
| 258 |
-
Returns:
|
| 259 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 260 |
-
`tuple` where the first element is the sample tensor.
|
| 261 |
-
"""
|
| 262 |
-
if joint_attention_kwargs is not None:
|
| 263 |
-
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 264 |
-
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 265 |
-
else:
|
| 266 |
-
lora_scale = 1.0
|
| 267 |
-
|
| 268 |
-
if USE_PEFT_BACKEND:
|
| 269 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 270 |
-
scale_lora_layers(self, lora_scale)
|
| 271 |
-
else:
|
| 272 |
-
if (
|
| 273 |
-
joint_attention_kwargs is not None
|
| 274 |
-
and joint_attention_kwargs.get("scale", None) is not None
|
| 275 |
-
):
|
| 276 |
-
logger.warning(
|
| 277 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 278 |
-
)
|
| 279 |
-
hidden_states = self.x_embedder(hidden_states)
|
| 280 |
-
|
| 281 |
-
# add condition
|
| 282 |
-
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
| 283 |
-
|
| 284 |
-
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 285 |
-
if guidance is not None:
|
| 286 |
-
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 287 |
-
else:
|
| 288 |
-
guidance = None
|
| 289 |
-
temb = (
|
| 290 |
-
self.time_text_embed(timestep, pooled_projections)
|
| 291 |
-
if guidance is None
|
| 292 |
-
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 293 |
-
)
|
| 294 |
-
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 295 |
-
|
| 296 |
-
txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
|
| 297 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
| 298 |
-
image_rotary_emb = self.pos_embed(ids)
|
| 299 |
-
|
| 300 |
-
block_samples = ()
|
| 301 |
-
for _, block in enumerate(self.transformer_blocks):
|
| 302 |
-
if self.training and self.gradient_checkpointing:
|
| 303 |
-
|
| 304 |
-
def create_custom_forward(module, return_dict=None):
|
| 305 |
-
def custom_forward(*inputs):
|
| 306 |
-
if return_dict is not None:
|
| 307 |
-
return module(*inputs, return_dict=return_dict)
|
| 308 |
-
else:
|
| 309 |
-
return module(*inputs)
|
| 310 |
-
|
| 311 |
-
return custom_forward
|
| 312 |
-
|
| 313 |
-
ckpt_kwargs: Dict[str, Any] = (
|
| 314 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 315 |
-
)
|
| 316 |
-
(
|
| 317 |
-
encoder_hidden_states,
|
| 318 |
-
hidden_states,
|
| 319 |
-
) = torch.utils.checkpoint.checkpoint(
|
| 320 |
-
create_custom_forward(block),
|
| 321 |
-
hidden_states,
|
| 322 |
-
encoder_hidden_states,
|
| 323 |
-
temb,
|
| 324 |
-
image_rotary_emb,
|
| 325 |
-
**ckpt_kwargs,
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
-
else:
|
| 329 |
-
encoder_hidden_states, hidden_states = block(
|
| 330 |
-
hidden_states=hidden_states,
|
| 331 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 332 |
-
temb=temb,
|
| 333 |
-
image_rotary_emb=image_rotary_emb,
|
| 334 |
-
)
|
| 335 |
-
block_samples = block_samples + (hidden_states,)
|
| 336 |
-
|
| 337 |
-
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 338 |
-
|
| 339 |
-
single_block_samples = ()
|
| 340 |
-
for _, block in enumerate(self.single_transformer_blocks):
|
| 341 |
-
if self.training and self.gradient_checkpointing:
|
| 342 |
-
|
| 343 |
-
def create_custom_forward(module, return_dict=None):
|
| 344 |
-
def custom_forward(*inputs):
|
| 345 |
-
if return_dict is not None:
|
| 346 |
-
return module(*inputs, return_dict=return_dict)
|
| 347 |
-
else:
|
| 348 |
-
return module(*inputs)
|
| 349 |
-
|
| 350 |
-
return custom_forward
|
| 351 |
-
|
| 352 |
-
ckpt_kwargs: Dict[str, Any] = (
|
| 353 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 354 |
-
)
|
| 355 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 356 |
-
create_custom_forward(block),
|
| 357 |
-
hidden_states,
|
| 358 |
-
temb,
|
| 359 |
-
image_rotary_emb,
|
| 360 |
-
**ckpt_kwargs,
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
else:
|
| 364 |
-
hidden_states = block(
|
| 365 |
-
hidden_states=hidden_states,
|
| 366 |
-
temb=temb,
|
| 367 |
-
image_rotary_emb=image_rotary_emb,
|
| 368 |
-
)
|
| 369 |
-
single_block_samples = single_block_samples + (
|
| 370 |
-
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
# controlnet block
|
| 374 |
-
controlnet_block_samples = ()
|
| 375 |
-
for block_sample, controlnet_block in zip(
|
| 376 |
-
block_samples, self.controlnet_blocks
|
| 377 |
-
):
|
| 378 |
-
block_sample = controlnet_block(block_sample)
|
| 379 |
-
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
| 380 |
-
|
| 381 |
-
controlnet_single_block_samples = ()
|
| 382 |
-
for single_block_sample, controlnet_block in zip(
|
| 383 |
-
single_block_samples, self.controlnet_single_blocks
|
| 384 |
-
):
|
| 385 |
-
single_block_sample = controlnet_block(single_block_sample)
|
| 386 |
-
controlnet_single_block_samples = controlnet_single_block_samples + (
|
| 387 |
-
single_block_sample,
|
| 388 |
-
)
|
| 389 |
-
|
| 390 |
-
# scaling
|
| 391 |
-
controlnet_block_samples = [
|
| 392 |
-
sample * conditioning_scale for sample in controlnet_block_samples
|
| 393 |
-
]
|
| 394 |
-
controlnet_single_block_samples = [
|
| 395 |
-
sample * conditioning_scale for sample in controlnet_single_block_samples
|
| 396 |
-
]
|
| 397 |
-
|
| 398 |
-
#
|
| 399 |
-
controlnet_block_samples = (
|
| 400 |
-
None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
| 401 |
-
)
|
| 402 |
-
controlnet_single_block_samples = (
|
| 403 |
-
None
|
| 404 |
-
if len(controlnet_single_block_samples) == 0
|
| 405 |
-
else controlnet_single_block_samples
|
| 406 |
-
)
|
| 407 |
-
|
| 408 |
-
if USE_PEFT_BACKEND:
|
| 409 |
-
# remove `lora_scale` from each PEFT layer
|
| 410 |
-
unscale_lora_layers(self, lora_scale)
|
| 411 |
-
|
| 412 |
-
if not return_dict:
|
| 413 |
-
return (controlnet_block_samples, controlnet_single_block_samples)
|
| 414 |
-
|
| 415 |
-
return FluxControlNetOutput(
|
| 416 |
-
controlnet_block_samples=controlnet_block_samples,
|
| 417 |
-
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 418 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|