Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,10 +14,15 @@ DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
|
| 14 |
"""
|
| 15 |
|
| 16 |
css = '''
|
| 17 |
-
.gradio-container{
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
footer {
|
| 20 |
-
visibility: hidden
|
| 21 |
}
|
| 22 |
'''
|
| 23 |
|
|
@@ -27,17 +32,15 @@ examples = [
|
|
| 27 |
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
| 28 |
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
| 29 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
| 30 |
-
|
| 31 |
]
|
| 32 |
|
| 33 |
-
|
| 34 |
-
MODEL_ID = os.getenv("MODEL_VAL_PATH") #uses SG161222/RealVisXL_V5.0_Lightning or SG161222/RealVisXL_V4.0_Lightning
|
| 35 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 36 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 37 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 38 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
| 39 |
|
| 40 |
-
#Load model outside of function
|
| 41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 42 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 43 |
MODEL_ID,
|
|
@@ -78,14 +81,14 @@ def generate(
|
|
| 78 |
guidance_scale: float = 3,
|
| 79 |
num_inference_steps: int = 25,
|
| 80 |
randomize_seed: bool = False,
|
| 81 |
-
use_resolution_binning: bool = True,
|
| 82 |
num_images: int = 4, # Number of images to generate
|
| 83 |
progress=gr.Progress(track_tqdm=True),
|
| 84 |
):
|
| 85 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 86 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 87 |
|
| 88 |
-
#Options
|
| 89 |
options = {
|
| 90 |
"prompt": [prompt] * num_images,
|
| 91 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
@@ -100,7 +103,7 @@ def generate(
|
|
| 100 |
if use_resolution_binning:
|
| 101 |
options["use_resolution_binning"] = True
|
| 102 |
|
| 103 |
-
#Images potential batches
|
| 104 |
images = []
|
| 105 |
for i in range(0, num_images, BATCH_SIZE):
|
| 106 |
batch_options = options.copy()
|
|
@@ -113,7 +116,7 @@ def generate(
|
|
| 113 |
return image_paths, seed
|
| 114 |
|
| 115 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 116 |
-
gr.Markdown(DESCRIPTIONx)
|
| 117 |
with gr.Group():
|
| 118 |
with gr.Row():
|
| 119 |
prompt = gr.Text(
|
|
@@ -124,7 +127,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 124 |
container=False,
|
| 125 |
)
|
| 126 |
run_button = gr.Button("Run", scale=0)
|
| 127 |
-
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
| 128 |
with gr.Accordion("Advanced options", open=False, visible=True):
|
| 129 |
num_images = gr.Slider(
|
| 130 |
label="Number of Images",
|
|
@@ -216,7 +219,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 216 |
],
|
| 217 |
outputs=[result, seed],
|
| 218 |
api_name="run",
|
| 219 |
-
)
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
| 222 |
demo.queue(max_size=40).launch(ssr_mode=False)
|
|
|
|
| 14 |
"""
|
| 15 |
|
| 16 |
css = '''
|
| 17 |
+
.gradio-container {
|
| 18 |
+
max-width: 560px !important;
|
| 19 |
+
margin: 0 auto !important;
|
| 20 |
+
}
|
| 21 |
+
h1 {
|
| 22 |
+
text-align: center;
|
| 23 |
+
}
|
| 24 |
footer {
|
| 25 |
+
visibility: hidden;
|
| 26 |
}
|
| 27 |
'''
|
| 28 |
|
|
|
|
| 32 |
"Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw",
|
| 33 |
"Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5",
|
| 34 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
|
|
|
| 35 |
]
|
| 36 |
|
| 37 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") # uses SG161222/RealVisXL_V5.0_Lightning or SG161222/RealVisXL_V4.0_Lightning
|
|
|
|
| 38 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 39 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 40 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 41 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
| 42 |
|
| 43 |
+
# Load model outside of function
|
| 44 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 45 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 46 |
MODEL_ID,
|
|
|
|
| 81 |
guidance_scale: float = 3,
|
| 82 |
num_inference_steps: int = 25,
|
| 83 |
randomize_seed: bool = False,
|
| 84 |
+
use_resolution_binning: bool = True,
|
| 85 |
num_images: int = 4, # Number of images to generate
|
| 86 |
progress=gr.Progress(track_tqdm=True),
|
| 87 |
):
|
| 88 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 89 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 90 |
|
| 91 |
+
# Options
|
| 92 |
options = {
|
| 93 |
"prompt": [prompt] * num_images,
|
| 94 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
|
| 103 |
if use_resolution_binning:
|
| 104 |
options["use_resolution_binning"] = True
|
| 105 |
|
| 106 |
+
# Images potential batches
|
| 107 |
images = []
|
| 108 |
for i in range(0, num_images, BATCH_SIZE):
|
| 109 |
batch_options = options.copy()
|
|
|
|
| 116 |
return image_paths, seed
|
| 117 |
|
| 118 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 119 |
+
gr.Markdown(DESCRIPTIONx)
|
| 120 |
with gr.Group():
|
| 121 |
with gr.Row():
|
| 122 |
prompt = gr.Text(
|
|
|
|
| 127 |
container=False,
|
| 128 |
)
|
| 129 |
run_button = gr.Button("Run", scale=0)
|
| 130 |
+
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
| 131 |
with gr.Accordion("Advanced options", open=False, visible=True):
|
| 132 |
num_images = gr.Slider(
|
| 133 |
label="Number of Images",
|
|
|
|
| 219 |
],
|
| 220 |
outputs=[result, seed],
|
| 221 |
api_name="run",
|
| 222 |
+
)
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
| 225 |
demo.queue(max_size=40).launch(ssr_mode=False)
|