Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,13 +9,11 @@ import spaces
|
|
| 9 |
import torch
|
| 10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
|
| 12 |
-
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
| 13 |
-
|
| 14 |
-
"""
|
| 15 |
|
| 16 |
css = '''
|
| 17 |
.gradio-container {
|
| 18 |
-
max-width:
|
| 19 |
margin: 0 auto !important;
|
| 20 |
}
|
| 21 |
h1 {
|
|
@@ -34,13 +32,12 @@ examples = [
|
|
| 34 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
| 35 |
]
|
| 36 |
|
| 37 |
-
MODEL_ID = os.getenv("MODEL_VAL_PATH") #
|
| 38 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 39 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 40 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 41 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 42 |
|
| 43 |
-
# Load model outside of function
|
| 44 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 45 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 46 |
MODEL_ID,
|
|
@@ -50,11 +47,9 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
| 50 |
).to(device)
|
| 51 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 52 |
|
| 53 |
-
# Compile speedup
|
| 54 |
if USE_TORCH_COMPILE:
|
| 55 |
pipe.compile()
|
| 56 |
|
| 57 |
-
# Offloading capacity (RAM)
|
| 58 |
if ENABLE_CPU_OFFLOAD:
|
| 59 |
pipe.enable_model_cpu_offload()
|
| 60 |
|
|
@@ -82,13 +77,12 @@ def generate(
|
|
| 82 |
num_inference_steps: int = 25,
|
| 83 |
randomize_seed: bool = False,
|
| 84 |
use_resolution_binning: bool = True,
|
| 85 |
-
num_images: int = 4,
|
| 86 |
progress=gr.Progress(track_tqdm=True),
|
| 87 |
):
|
| 88 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 89 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 90 |
|
| 91 |
-
# Options
|
| 92 |
options = {
|
| 93 |
"prompt": [prompt] * num_images,
|
| 94 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
@@ -103,7 +97,6 @@ def generate(
|
|
| 103 |
if use_resolution_binning:
|
| 104 |
options["use_resolution_binning"] = True
|
| 105 |
|
| 106 |
-
# Generate images in batches
|
| 107 |
images = []
|
| 108 |
for i in range(0, num_images, BATCH_SIZE):
|
| 109 |
batch_options = options.copy()
|
|
@@ -117,6 +110,7 @@ def generate(
|
|
| 117 |
|
| 118 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 119 |
gr.Markdown(DESCRIPTIONx)
|
|
|
|
| 120 |
with gr.Row():
|
| 121 |
with gr.Column(scale=3):
|
| 122 |
with gr.Row():
|
|
@@ -128,72 +122,70 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
| 128 |
)
|
| 129 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 130 |
|
| 131 |
-
# Changed from gr.Image to gr.Gallery to handle multiple images
|
| 132 |
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
| 133 |
-
|
| 134 |
-
with gr.Accordion("Advanced options", open=False, visible=True):
|
| 135 |
-
num_images = gr.Slider(
|
| 136 |
-
label="Number of Images",
|
| 137 |
-
minimum=1,
|
| 138 |
-
maximum=4,
|
| 139 |
-
step=1,
|
| 140 |
-
value=4,
|
| 141 |
-
)
|
| 142 |
-
with gr.Row():
|
| 143 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 144 |
-
negative_prompt = gr.Text(
|
| 145 |
-
label="Negative prompt",
|
| 146 |
-
max_lines=5,
|
| 147 |
-
lines=4,
|
| 148 |
-
placeholder="Enter a negative prompt",
|
| 149 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 150 |
-
visible=True,
|
| 151 |
-
)
|
| 152 |
-
seed = gr.Slider(
|
| 153 |
-
label="Seed",
|
| 154 |
-
minimum=0,
|
| 155 |
-
maximum=MAX_SEED,
|
| 156 |
-
step=1,
|
| 157 |
-
value=0,
|
| 158 |
-
)
|
| 159 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 160 |
-
with gr.Row(visible=True):
|
| 161 |
-
width = gr.Slider(
|
| 162 |
-
label="Width",
|
| 163 |
-
minimum=512,
|
| 164 |
-
maximum=MAX_IMAGE_SIZE,
|
| 165 |
-
step=64,
|
| 166 |
-
value=1024,
|
| 167 |
-
)
|
| 168 |
-
height = gr.Slider(
|
| 169 |
-
label="Height",
|
| 170 |
-
minimum=512,
|
| 171 |
-
maximum=MAX_IMAGE_SIZE,
|
| 172 |
-
step=64,
|
| 173 |
-
value=1024,
|
| 174 |
-
)
|
| 175 |
-
with gr.Row():
|
| 176 |
-
guidance_scale = gr.Slider(
|
| 177 |
-
label="Guidance Scale",
|
| 178 |
-
minimum=0.1,
|
| 179 |
-
maximum=6,
|
| 180 |
-
step=0.1,
|
| 181 |
-
value=3.0,
|
| 182 |
-
)
|
| 183 |
-
num_inference_steps = gr.Slider(
|
| 184 |
-
label="Number of inference steps",
|
| 185 |
-
minimum=1,
|
| 186 |
-
maximum=25,
|
| 187 |
-
step=1,
|
| 188 |
-
value=23,
|
| 189 |
-
)
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
use_negative_prompt.change(
|
| 199 |
fn=lambda x: gr.update(visible=x),
|
|
|
|
| 9 |
import torch
|
| 10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
|
| 12 |
+
DESCRIPTIONx = """## STABLE HAMSTER 🐹"""
|
|
|
|
|
|
|
| 13 |
|
| 14 |
css = '''
|
| 15 |
.gradio-container {
|
| 16 |
+
max-width: 1000px !important;
|
| 17 |
margin: 0 auto !important;
|
| 18 |
}
|
| 19 |
h1 {
|
|
|
|
| 32 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
| 33 |
]
|
| 34 |
|
| 35 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") # SG161222/RealVisXL_V5.0_Lightning or SG161222/RealVisXL_V4.0_Lightning
|
| 36 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
| 37 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 38 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 39 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
| 40 |
|
|
|
|
| 41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 42 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 43 |
MODEL_ID,
|
|
|
|
| 47 |
).to(device)
|
| 48 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 49 |
|
|
|
|
| 50 |
if USE_TORCH_COMPILE:
|
| 51 |
pipe.compile()
|
| 52 |
|
|
|
|
| 53 |
if ENABLE_CPU_OFFLOAD:
|
| 54 |
pipe.enable_model_cpu_offload()
|
| 55 |
|
|
|
|
| 77 |
num_inference_steps: int = 25,
|
| 78 |
randomize_seed: bool = False,
|
| 79 |
use_resolution_binning: bool = True,
|
| 80 |
+
num_images: int = 4,
|
| 81 |
progress=gr.Progress(track_tqdm=True),
|
| 82 |
):
|
| 83 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
| 84 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 85 |
|
|
|
|
| 86 |
options = {
|
| 87 |
"prompt": [prompt] * num_images,
|
| 88 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
|
| 97 |
if use_resolution_binning:
|
| 98 |
options["use_resolution_binning"] = True
|
| 99 |
|
|
|
|
| 100 |
images = []
|
| 101 |
for i in range(0, num_images, BATCH_SIZE):
|
| 102 |
batch_options = options.copy()
|
|
|
|
| 110 |
|
| 111 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 112 |
gr.Markdown(DESCRIPTIONx)
|
| 113 |
+
|
| 114 |
with gr.Row():
|
| 115 |
with gr.Column(scale=3):
|
| 116 |
with gr.Row():
|
|
|
|
| 122 |
)
|
| 123 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 124 |
|
|
|
|
| 125 |
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
with gr.Accordion("Advanced options", open=False, visible=True):
|
| 128 |
+
num_images = gr.Slider(
|
| 129 |
+
label="Number of Images",
|
| 130 |
+
minimum=1,
|
| 131 |
+
maximum=4,
|
| 132 |
+
step=1,
|
| 133 |
+
value=4,
|
| 134 |
+
)
|
| 135 |
+
with gr.Row():
|
| 136 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
| 137 |
+
negative_prompt = gr.Text(
|
| 138 |
+
label="Negative prompt",
|
| 139 |
+
max_lines=5,
|
| 140 |
+
lines=4,
|
| 141 |
+
placeholder="Enter a negative prompt",
|
| 142 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 143 |
+
visible=True,
|
| 144 |
+
)
|
| 145 |
+
seed = gr.Slider(
|
| 146 |
+
label="Seed",
|
| 147 |
+
minimum=0,
|
| 148 |
+
maximum=MAX_SEED,
|
| 149 |
+
step=1,
|
| 150 |
+
value=0,
|
| 151 |
+
)
|
| 152 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 153 |
+
with gr.Row(visible=True):
|
| 154 |
+
width = gr.Slider(
|
| 155 |
+
label="Width",
|
| 156 |
+
minimum=512,
|
| 157 |
+
maximum=MAX_IMAGE_SIZE,
|
| 158 |
+
step=64,
|
| 159 |
+
value=1024,
|
| 160 |
+
)
|
| 161 |
+
height = gr.Slider(
|
| 162 |
+
label="Height",
|
| 163 |
+
minimum=512,
|
| 164 |
+
maximum=MAX_IMAGE_SIZE,
|
| 165 |
+
step=64,
|
| 166 |
+
value=1024,
|
| 167 |
+
)
|
| 168 |
+
with gr.Row():
|
| 169 |
+
guidance_scale = gr.Slider(
|
| 170 |
+
label="Guidance Scale",
|
| 171 |
+
minimum=0.1,
|
| 172 |
+
maximum=6,
|
| 173 |
+
step=0.1,
|
| 174 |
+
value=3.0,
|
| 175 |
+
)
|
| 176 |
+
num_inference_steps = gr.Slider(
|
| 177 |
+
label="Number of inference steps",
|
| 178 |
+
minimum=1,
|
| 179 |
+
maximum=25,
|
| 180 |
+
step=1,
|
| 181 |
+
value=23,
|
| 182 |
+
)
|
| 183 |
+
with gr.Column(scale=1):
|
| 184 |
+
gr.Examples(
|
| 185 |
+
examples=examples,
|
| 186 |
+
inputs=prompt,
|
| 187 |
+
cache_examples=False,
|
| 188 |
+
)
|
| 189 |
|
| 190 |
use_negative_prompt.change(
|
| 191 |
fn=lambda x: gr.update(visible=x),
|