import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch import os import zipfile # Load model and processor model_name = "prithivMLmods/Watermark-Detection-SigLIP2" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Label mapping id2label = { "0": "No Watermark", "1": "Watermark" } # Output folders watermark_dir = "Watermarked" no_watermark_dir = "No_Watermark" zip_filename = "watermark_classified_images.zip" os.makedirs(watermark_dir, exist_ok=True) os.makedirs(no_watermark_dir, exist_ok=True) def classify_and_save_watermarks(images): results = {} for image_file in images: image_name = os.path.basename(image_file.name) image = Image.open(image_file).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))} max_label = max(prediction, key=prediction.get) max_score = prediction[max_label] # Save image to appropriate folder filename = f"{max_label.replace(' ', '_')}_{max_score:.3f}.png" save_dir = watermark_dir if "Watermark" in max_label else no_watermark_dir save_path = os.path.join(save_dir, filename) image.save(save_path) results[image_name] = { "predictions": prediction, "saved_as": filename } # Create zip of both folders with zipfile.ZipFile(zip_filename, "w") as zipf: for folder in [watermark_dir, no_watermark_dir]: for root, _, files in os.walk(folder): for file in files: file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, start=os.path.dirname(folder)) zipf.write(file_path, arcname) return results, zip_filename # Gradio interface iface = gr.Interface( fn=classify_and_save_watermarks, inputs=gr.File(file_types=["image"], file_count="multiple", label="Upload Images"), outputs=[ gr.JSON(label="Watermark Predictions"), gr.File(label="Download Classified Images (ZIP)") ], title="Watermark Detection and Classification", description="Upload multiple images to detect watermarks. Images will be saved in 'Watermarked' or 'No Watermark' folders and available for download as a ZIP." ) if __name__ == "__main__": iface.launch(ssr_mode=False)