Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import edge_tts | |
| import asyncio | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
| from transformers.image_utils import load_image | |
| import time | |
| DESCRIPTION = """ | |
| # QwQ Edge 💬 | |
| """ | |
| css = ''' | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| #duplicate-button { | |
| margin: auto; | |
| color: #fff; | |
| background: #1565c0; | |
| border-radius: 100vh; | |
| } | |
| ''' | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| model.eval() | |
| TTS_VOICES = [ | |
| "en-US-JennyNeural", # @tts1 | |
| "en-US-GuyNeural", # @tts2 | |
| "en-US-AriaNeural", # @tts3 | |
| "en-US-DavisNeural", # @tts4 | |
| "en-US-JaneNeural", # @tts5 | |
| "en-US-JasonNeural", # @tts6 | |
| ] | |
| MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
| """Convert text to speech using Edge TTS and save as MP3""" | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| return output_file | |
| def generate( | |
| input_dict: dict, | |
| chat_history: list[dict], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| """Generates chatbot response and handles TTS requests with multimodal input support""" | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| # Check if input includes image(s) | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| # Check if message is for TTS | |
| tts_prefix = "@tts" | |
| is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 7)) | |
| voice_index = next((i for i in range(1, 7) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
| if is_tts and voice_index: | |
| voice = TTS_VOICES[voice_index - 1] | |
| text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
| else: | |
| voice = None | |
| text = text.replace(tts_prefix, "").strip() | |
| conversation = [*chat_history, {"role": "user", "content": text}] | |
| if images: | |
| # Process multimodal input | |
| messages = [ | |
| {"role": "user", "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ]} | |
| ] | |
| prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
| # Handle generation for multimodal input | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens) | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield "Thinking..." | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| # Process text-only input | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| # Yield text response first | |
| yield final_response | |
| if is_tts and voice: | |
| output_file = asyncio.run(text_to_speech(final_response, voice)) | |
| # Return playable audio separately | |
| yield gr.Audio(output_file, autoplay=True) | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| ["@tts1 Who is Nikola Tesla, and why did he die?"], | |
| [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], | |
| [{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
| ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"], | |
| ["Write a Python function to check if a number is prime."], | |
| ["@tts2 What causes rainbows to form?"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description=DESCRIPTION, | |
| css=css, | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() |