Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,812 Bytes
baba7b1 21a124f c03785c 87775b4 c03785c c3684ef c03785c 64322ab c03785c 87775b4 c03785c a5ec87b c03785c a5ec87b c03785c a5ec87b c03785c a5ec87b c03785c 1eae2f3 c03785c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
os.system("pip install git+https://github.com/shumingma/transformers.git")
import threading
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
import gradio as gr
import spaces
# Load model and tokenizer
model_id = "microsoft/bitnet-b1.58-2B-4T"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
print(model.device)
@spaces.GPU
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
yield response
# Initialize Gradio chat interface
demo = gr.ChatInterface(
fn=respond,
title="Bitnet-b1.58-2B-4T Chatbot",
description="This chat application is powered by Microsoft BitNet-b1.58-2B-4T and designed for natural and fast conversations.",
examples=[
# Each example: [message, system_message, max_new_tokens, temperature, top_p]
[
"Hello! How are you?",
"You are a helpful AI assistant.",
512,
0.7,
0.95,
],
[
"Can you code a snake game in Python?",
"You are a helpful AI assistant.",
512,
0.7,
0.95,
],
],
additional_inputs=[
gr.Textbox(
value="You are a helpful AI assistant.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
)
if __name__ == "__main__":
demo.launch()
|