sway0604 commited on
Commit
e2c858f
·
verified ·
1 Parent(s): f3bf1a9

Upload app(1).py

Browse files
Files changed (1) hide show
  1. app(1).py +75 -0
app(1).py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ from newspaper import Article
4
+
5
+ # Model and tokenizer
6
+ model_name = "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
9
+
10
+ # Setting the page title
11
+ st.title("Financial Sentiment Analysis")
12
+
13
+ # Input option: Text or URL
14
+ input_option = st.radio("Choose input type:", ["Text Input", "URL Input"])
15
+
16
+ if input_option == "Text Input":
17
+ text_input = st.text_area("Enter Financial News:", "DEMO : Tesla stock is soaring after record-breaking earnings.")
18
+ else:
19
+ url_input = st.text_input("Enter URL to scrape headline:")
20
+ if url_input:
21
+ try:
22
+ # Scrape the headline from the URL
23
+ article = Article(url_input)
24
+ article.download()
25
+ article.parse()
26
+ text_input = article.title # Use the article's title as the headline
27
+ st.success(f"Scraped Headline: {text_input}")
28
+ except Exception as e:
29
+ st.error(f"Failed to extract headline: {e}")
30
+ text_input = ""
31
+
32
+ # Function to perform sentiment analysis
33
+ def predict_sentiment(text):
34
+ inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
35
+ outputs = model(**inputs)
36
+ sentiment_class = outputs.logits.argmax(dim=1).item()
37
+ sentiment_mapping = {0: 'Negative', 1: 'Neutral', 2: 'Positive'}
38
+ predicted_sentiment = sentiment_mapping.get(sentiment_class, 'Unknown')
39
+ return predicted_sentiment, outputs.logits.softmax(dim=1)[0].tolist()
40
+
41
+ # Button to trigger sentiment analysis
42
+ if st.button("Analyze Sentiment"):
43
+ # Checking if the input text is not empty
44
+ if text_input and text_input.strip():
45
+ # Showing loading spinner while processing
46
+ with st.spinner("Analyzing sentiment..."):
47
+ sentiment, confidence_scores = predict_sentiment(text_input)
48
+
49
+ # Considering a threshold for sentiment prediction
50
+ threshold = 0.5
51
+
52
+ # Changing the success message background color based on sentiment and threshold
53
+ if sentiment == 'Positive' and confidence_scores[2] > threshold:
54
+ st.success(f"Sentiment: {sentiment} (Confidence: {confidence_scores[2]:.3f})")
55
+ elif sentiment == 'Negative' and confidence_scores[0] > threshold:
56
+ st.error(f"Sentiment: {sentiment} (Confidence: {confidence_scores[0]:.3f})")
57
+ elif sentiment == 'Neutral' and confidence_scores[1] > threshold:
58
+ st.info(f"Sentiment: {sentiment} (Confidence: {confidence_scores[1]:.3f})")
59
+ else:
60
+ st.warning("Low confidence, or sentiment not above threshold. Please try again.")
61
+ else:
62
+ st.warning("Please enter some valid text for sentiment analysis.")
63
+
64
+ # Optional: Displaying the raw sentiment scores
65
+ if st.checkbox("Show Raw Sentiment Scores"):
66
+ if text_input and text_input.strip():
67
+ _, raw_scores = predict_sentiment(text_input)
68
+ st.info(f"Raw Sentiment Scores: \n Negative : {raw_scores[0]} \n Positive : {raw_scores[2]} \n Neutral : {raw_scores[1]}")
69
+
70
+ # footer
71
+ st.markdown(
72
+ """
73
+ ** Built and maintained by Swayam Mohanty **
74
+ """
75
+ )