Spaces:
Running
Running
pri2k
commited on
Commit
Β·
0774891
1
Parent(s):
ec7f722
π§ Updated app.py to compute embeddings using MentalBERT
Browse files- .gitignore +3 -0
- Dockerfile +9 -5
- app.py +33 -11
- requirements.txt +1 -1
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
__pycache__/
|
3 |
+
*.pyc
|
Dockerfile
CHANGED
@@ -1,17 +1,21 @@
|
|
1 |
-
# Use an official Python image
|
2 |
FROM python:3.11-slim
|
3 |
|
4 |
-
# Set working directory
|
5 |
WORKDIR /app
|
6 |
|
7 |
-
# Copy
|
8 |
COPY . .
|
9 |
|
10 |
# Install dependencies
|
11 |
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
EXPOSE 7860
|
15 |
|
16 |
-
# Run the
|
17 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
|
1 |
FROM python:3.11-slim
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
+
# Copy files
|
6 |
COPY . .
|
7 |
|
8 |
# Install dependencies
|
9 |
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
|
11 |
+
# Set Hugging Face cache location
|
12 |
+
ENV HF_HOME=/app/.cache/huggingface
|
13 |
+
ENV TRANSFORMERS_CACHE=$HF_HOME
|
14 |
+
ENV HF_DATASETS_CACHE=$HF_HOME
|
15 |
+
ENV HF_METRICS_CACHE=$HF_HOME
|
16 |
+
ENV HUGGINGFACE_HUB_CACHE=$HF_HOME
|
17 |
+
|
18 |
EXPOSE 7860
|
19 |
|
20 |
+
# Run the app
|
21 |
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,21 +1,43 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
-
from
|
|
|
4 |
import os
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
16 |
text: str
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@app.post("/embed")
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
import os
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Load Hugging Face Token
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
+
if not HF_TOKEN:
|
12 |
+
raise ValueError("β Hugging Face API token not found! Set HF_TOKEN as an environment variable.")
|
13 |
|
14 |
+
# Load tokenizer and model
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("mental/mental-bert-base-uncased", token=HF_TOKEN)
|
16 |
+
model = AutoModel.from_pretrained("mental/mental-bert-base-uncased", token=HF_TOKEN)
|
17 |
+
model.eval() # Set model to evaluation mode
|
18 |
|
19 |
+
# Request body schema
|
20 |
+
class TextRequest(BaseModel):
|
21 |
text: str
|
22 |
|
23 |
+
# Helper function to compute embedding
|
24 |
+
def compute_embedding(text: str) -> list[float]:
|
25 |
+
"""Generate a sentence embedding using mean pooling on MentalBERT output."""
|
26 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**inputs)
|
29 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze()
|
30 |
+
return embedding.tolist()
|
31 |
+
|
32 |
+
# POST endpoint to return embedding
|
33 |
@app.post("/embed")
|
34 |
+
def get_embedding(request: TextRequest):
|
35 |
+
text = request.text.strip()
|
36 |
+
if not text:
|
37 |
+
raise HTTPException(status_code=400, detail="Input text cannot be empty.")
|
38 |
+
|
39 |
+
try:
|
40 |
+
embedding = compute_embedding(text)
|
41 |
+
return {"embedding": embedding}
|
42 |
+
except Exception as e:
|
43 |
+
raise HTTPException(status_code=500, detail=f"Error computing embedding: {str(e)}")
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
-
sentence-transformers
|
4 |
torch
|
|
|
|
1 |
fastapi
|
2 |
uvicorn
|
|
|
3 |
torch
|
4 |
+
sentence-transformers
|