from transformers import ViTFeatureExtractor, BertTokenizer, VisionEncoderDecoderModel, AutoTokenizer, AutoFeatureExtractor import gradio as gr model=VisionEncoderDecoderModel.from_pretrained("priyank-m/beta-OCR") tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/vit-mae-large") def run_ocr(image): pixel_values = feature_extractor(image, return_tensors="pt").pixel_values # autoregressively generate caption (uses greedy decoding by default ) generated_ids = model.generate(pixel_values, max_new_tokens=50) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text demo = gr.Interface(fn=run_ocr, inputs="image", outputs="text") demo.launch()