Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from werkzeug.utils import secure_filename
|
3 |
-
from flask_cors import CORS
|
4 |
import os
|
5 |
import torch
|
6 |
import fitz # PyMuPDF
|
@@ -12,6 +12,11 @@ import faiss
|
|
12 |
import numpy as np
|
13 |
import tempfile
|
14 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Fix caching issue on Hugging Face Spaces
|
17 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
@@ -19,16 +24,65 @@ os.environ["HF_HOME"] = "/tmp"
|
|
19 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
-
CORS(app) #
|
23 |
|
24 |
UPLOAD_FOLDER = "/tmp/uploads"
|
25 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
26 |
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Improved OCR function
|
30 |
def ocr_pdf(pdf_path):
|
31 |
try:
|
|
|
32 |
# Use a higher DPI for better quality
|
33 |
images = convert_from_path(
|
34 |
pdf_path,
|
@@ -39,17 +93,20 @@ def ocr_pdf(pdf_path):
|
|
39 |
)
|
40 |
|
41 |
text = ""
|
42 |
-
for img in images:
|
|
|
43 |
# Preprocess the image for better OCR results
|
44 |
preprocessed = preprocess_image_for_ocr(img)
|
45 |
# Use tesseract with more options
|
46 |
-
|
47 |
preprocessed,
|
48 |
config='--psm 1 --oem 3 -l eng' # Page segmentation mode 1 (auto), OCR Engine mode 3 (default)
|
49 |
)
|
|
|
|
|
50 |
return text
|
51 |
except Exception as e:
|
52 |
-
|
53 |
return ""
|
54 |
|
55 |
# Image preprocessing function for better OCR
|
@@ -66,27 +123,38 @@ def preprocess_image_for_ocr(img):
|
|
66 |
|
67 |
# Improved extract_text function with better text detection
|
68 |
def extract_text(pdf_path):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
#
|
89 |
def split_into_chunks(text, max_tokens=300, overlap=50):
|
|
|
90 |
sentences = text.split('.')
|
91 |
chunks, current = [], ''
|
92 |
for sentence in sentences:
|
@@ -102,60 +170,95 @@ def split_into_chunks(text, max_tokens=300, overlap=50):
|
|
102 |
current = sentence
|
103 |
if current:
|
104 |
chunks.append(current.strip())
|
|
|
105 |
return chunks
|
106 |
|
107 |
-
#
|
108 |
def setup_faiss(chunks):
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
def answer_with_qa_pipeline(chunks, question):
|
118 |
-
qa_pipeline = pipeline(
|
119 |
-
"question-answering",
|
120 |
-
model="distilbert-base-cased-distilled-squad",
|
121 |
-
tokenizer="distilbert-base-cased",
|
122 |
-
device=0 if device == "cuda" else -1
|
123 |
-
)
|
124 |
-
context = " ".join(chunks[:5])
|
125 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
result = qa_pipeline(question=question, context=context)
|
|
|
127 |
return result["answer"]
|
128 |
-
except:
|
|
|
129 |
return ""
|
130 |
|
131 |
-
#
|
132 |
def answer_with_generation(index, embeddings, chunks, question):
|
133 |
-
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
134 |
-
|
135 |
-
# Fix for meta tensor error - load model with device_map="auto"
|
136 |
-
model = AutoModelForCausalLM.from_pretrained(
|
137 |
-
"distilgpt2",
|
138 |
-
device_map="auto", # This handles device placement automatically
|
139 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 # Use fp16 if possible
|
140 |
-
)
|
141 |
-
|
142 |
-
if tokenizer.pad_token is None:
|
143 |
-
tokenizer.pad_token = tokenizer.eos_token
|
144 |
-
model.config.pad_token_id = model.config.eos_token_id
|
145 |
-
|
146 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
147 |
-
q_embedding = embedder.encode([question])
|
148 |
-
_, top_k_indices = index.search(q_embedding, k=3)
|
149 |
-
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
150 |
-
context = " ".join(relevant_chunks)
|
151 |
-
|
152 |
-
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
153 |
-
|
154 |
-
# Handle inputs without explicit device placement
|
155 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
156 |
-
# Let the model handle device placement internally
|
157 |
-
|
158 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
output = model.generate(
|
160 |
**inputs,
|
161 |
max_new_tokens=300,
|
@@ -165,15 +268,19 @@ def answer_with_generation(index, embeddings, chunks, question):
|
|
165 |
num_beams=3,
|
166 |
no_repeat_ngram_size=2
|
167 |
)
|
|
|
|
|
168 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
169 |
if "Detailed answer:" in answer:
|
170 |
-
|
|
|
|
|
171 |
return answer.strip()
|
172 |
except Exception as e:
|
173 |
-
|
174 |
return "I couldn't generate a good answer based on the PDF content."
|
175 |
|
176 |
-
#
|
177 |
@app.route('/')
|
178 |
def home():
|
179 |
return jsonify({"message": "PDF QA API is running!"})
|
@@ -182,28 +289,58 @@ def home():
|
|
182 |
def ask():
|
183 |
file = request.files.get("pdf")
|
184 |
question = request.form.get("question", "")
|
|
|
185 |
|
186 |
if not file or not question:
|
187 |
return jsonify({"error": "Both PDF file and question are required"}), 400
|
188 |
|
189 |
-
filename = secure_filename(file.filename)
|
190 |
-
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
191 |
-
file.save(filepath)
|
192 |
-
|
193 |
try:
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
text = extract_text(filepath)
|
|
|
|
|
|
|
196 |
chunks = split_into_chunks(text)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
answer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
return jsonify({"answer": answer})
|
204 |
|
205 |
except Exception as e:
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from werkzeug.utils import secure_filename
|
3 |
+
from flask_cors import CORS
|
4 |
import os
|
5 |
import torch
|
6 |
import fitz # PyMuPDF
|
|
|
12 |
import numpy as np
|
13 |
import tempfile
|
14 |
from PIL import Image
|
15 |
+
import logging
|
16 |
+
|
17 |
+
# Set up logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
|
21 |
# Fix caching issue on Hugging Face Spaces
|
22 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
|
|
24 |
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
25 |
|
26 |
app = Flask(__name__)
|
27 |
+
CORS(app) # Enable CORS for all routes
|
28 |
|
29 |
UPLOAD_FOLDER = "/tmp/uploads"
|
30 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
31 |
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
logger.info(f"Using device: {device}")
|
34 |
+
|
35 |
+
# Global model variables
|
36 |
+
embedder = None
|
37 |
+
qa_pipeline = None
|
38 |
+
tokenizer = None
|
39 |
+
model = None
|
40 |
+
|
41 |
+
# Initialize models once on startup
|
42 |
+
def initialize_models():
|
43 |
+
global embedder, qa_pipeline, tokenizer, model
|
44 |
+
try:
|
45 |
+
logger.info("Loading SentenceTransformer model...")
|
46 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
47 |
+
|
48 |
+
logger.info("Loading QA pipeline...")
|
49 |
+
qa_pipeline = pipeline(
|
50 |
+
"question-answering",
|
51 |
+
model="distilbert-base-cased-distilled-squad",
|
52 |
+
tokenizer="distilbert-base-cased",
|
53 |
+
device=0 if device == "cuda" else -1
|
54 |
+
)
|
55 |
+
|
56 |
+
logger.info("Loading language model...")
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
59 |
+
"distilgpt2",
|
60 |
+
device_map="auto",
|
61 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
62 |
+
)
|
63 |
+
|
64 |
+
if tokenizer.pad_token is None:
|
65 |
+
tokenizer.pad_token = tokenizer.eos_token
|
66 |
+
model.config.pad_token_id = model.config.eos_token_id
|
67 |
+
|
68 |
+
logger.info("Models initialized successfully")
|
69 |
+
except Exception as e:
|
70 |
+
logger.error(f"Error initializing models: {str(e)}")
|
71 |
+
raise
|
72 |
+
|
73 |
+
# Cleanup function for temporary files
|
74 |
+
def cleanup_temp_files(filepath):
|
75 |
+
try:
|
76 |
+
if os.path.exists(filepath):
|
77 |
+
os.remove(filepath)
|
78 |
+
logger.info(f"Removed temporary file: {filepath}")
|
79 |
+
except Exception as e:
|
80 |
+
logger.warning(f"Failed to clean up file {filepath}: {str(e)}")
|
81 |
|
82 |
# Improved OCR function
|
83 |
def ocr_pdf(pdf_path):
|
84 |
try:
|
85 |
+
logger.info(f"Starting OCR for {pdf_path}")
|
86 |
# Use a higher DPI for better quality
|
87 |
images = convert_from_path(
|
88 |
pdf_path,
|
|
|
93 |
)
|
94 |
|
95 |
text = ""
|
96 |
+
for i, img in enumerate(images):
|
97 |
+
logger.info(f"Processing page {i+1} of {len(images)}")
|
98 |
# Preprocess the image for better OCR results
|
99 |
preprocessed = preprocess_image_for_ocr(img)
|
100 |
# Use tesseract with more options
|
101 |
+
page_text = pytesseract.image_to_string(
|
102 |
preprocessed,
|
103 |
config='--psm 1 --oem 3 -l eng' # Page segmentation mode 1 (auto), OCR Engine mode 3 (default)
|
104 |
)
|
105 |
+
text += page_text
|
106 |
+
logger.info(f"OCR completed with {len(text)} characters extracted")
|
107 |
return text
|
108 |
except Exception as e:
|
109 |
+
logger.error(f"OCR error: {str(e)}")
|
110 |
return ""
|
111 |
|
112 |
# Image preprocessing function for better OCR
|
|
|
123 |
|
124 |
# Improved extract_text function with better text detection
|
125 |
def extract_text(pdf_path):
|
126 |
+
try:
|
127 |
+
logger.info(f"Extracting text from {pdf_path}")
|
128 |
+
doc = fitz.open(pdf_path)
|
129 |
+
text = ""
|
130 |
+
for page_num, page in enumerate(doc):
|
131 |
+
page_text = page.get_text()
|
132 |
+
text += page_text
|
133 |
+
logger.info(f"Extracted {len(page_text)} characters from page {page_num+1}")
|
134 |
+
|
135 |
+
# Check if the text is meaningful (more sophisticated check)
|
136 |
+
words = text.split()
|
137 |
+
unique_words = set(word.lower() for word in words if len(word) > 2)
|
138 |
+
|
139 |
+
logger.info(f"PDF text extraction: {len(text)} chars, {len(words)} words, {len(unique_words)} unique words")
|
140 |
+
|
141 |
+
# If we don't have enough meaningful text, try OCR
|
142 |
+
if len(unique_words) < 20 or len(text.strip()) < 100:
|
143 |
+
logger.info("Text extraction yielded insufficient results, trying OCR...")
|
144 |
+
ocr_text = ocr_pdf(pdf_path)
|
145 |
+
# If OCR gave us more text, use it
|
146 |
+
if len(ocr_text.strip()) > len(text.strip()):
|
147 |
+
logger.info(f"Using OCR result: {len(ocr_text)} chars (better than {len(text)} chars)")
|
148 |
+
text = ocr_text
|
149 |
+
|
150 |
+
return text
|
151 |
+
except Exception as e:
|
152 |
+
logger.error(f"Text extraction error: {str(e)}")
|
153 |
+
return ""
|
154 |
|
155 |
+
# Split into chunks
|
156 |
def split_into_chunks(text, max_tokens=300, overlap=50):
|
157 |
+
logger.info(f"Splitting text into chunks (max_tokens={max_tokens}, overlap={overlap})")
|
158 |
sentences = text.split('.')
|
159 |
chunks, current = [], ''
|
160 |
for sentence in sentences:
|
|
|
170 |
current = sentence
|
171 |
if current:
|
172 |
chunks.append(current.strip())
|
173 |
+
logger.info(f"Split text into {len(chunks)} chunks")
|
174 |
return chunks
|
175 |
|
176 |
+
# Setup FAISS
|
177 |
def setup_faiss(chunks):
|
178 |
+
try:
|
179 |
+
logger.info("Setting up FAISS index")
|
180 |
+
global embedder
|
181 |
+
if embedder is None:
|
182 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
183 |
+
|
184 |
+
embeddings = embedder.encode(chunks)
|
185 |
+
dim = embeddings.shape[1]
|
186 |
+
index = faiss.IndexFlatL2(dim)
|
187 |
+
index.add(embeddings)
|
188 |
+
logger.info(f"FAISS index created with {len(chunks)} chunks and dimension {dim}")
|
189 |
+
return index, embeddings, chunks
|
190 |
+
except Exception as e:
|
191 |
+
logger.error(f"FAISS setup error: {str(e)}")
|
192 |
+
raise
|
193 |
+
|
194 |
+
# QA pipeline
|
195 |
def answer_with_qa_pipeline(chunks, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
try:
|
197 |
+
logger.info(f"Answering with QA pipeline: '{question}'")
|
198 |
+
global qa_pipeline
|
199 |
+
if qa_pipeline is None:
|
200 |
+
logger.info("QA pipeline not initialized, creating now...")
|
201 |
+
qa_pipeline = pipeline(
|
202 |
+
"question-answering",
|
203 |
+
model="distilbert-base-cased-distilled-squad",
|
204 |
+
tokenizer="distilbert-base-cased",
|
205 |
+
device=0 if device == "cuda" else -1
|
206 |
+
)
|
207 |
+
|
208 |
+
# Limit context size to avoid token length issues
|
209 |
+
context = " ".join(chunks[:5])
|
210 |
+
if len(context) > 5000: # Approx token limit
|
211 |
+
context = context[:5000]
|
212 |
+
|
213 |
result = qa_pipeline(question=question, context=context)
|
214 |
+
logger.info(f"QA pipeline answer: '{result['answer']}' (score: {result['score']})")
|
215 |
return result["answer"]
|
216 |
+
except Exception as e:
|
217 |
+
logger.error(f"QA pipeline error: {str(e)}")
|
218 |
return ""
|
219 |
|
220 |
+
# Generation-based answering
|
221 |
def answer_with_generation(index, embeddings, chunks, question):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
try:
|
223 |
+
logger.info(f"Answering with generation model: '{question}'")
|
224 |
+
global tokenizer, model
|
225 |
+
|
226 |
+
if tokenizer is None or model is None:
|
227 |
+
logger.info("Generation models not initialized, creating now...")
|
228 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
229 |
+
model = AutoModelForCausalLM.from_pretrained(
|
230 |
+
"distilgpt2",
|
231 |
+
device_map="auto",
|
232 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
233 |
+
)
|
234 |
+
|
235 |
+
if tokenizer.pad_token is None:
|
236 |
+
tokenizer.pad_token = tokenizer.eos_token
|
237 |
+
model.config.pad_token_id = model.config.eos_token_id
|
238 |
+
|
239 |
+
# Get embeddings for question
|
240 |
+
q_embedding = embedder.encode([question])
|
241 |
+
|
242 |
+
# Find relevant chunks
|
243 |
+
_, top_k_indices = index.search(q_embedding, k=3)
|
244 |
+
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
245 |
+
context = " ".join(relevant_chunks)
|
246 |
+
|
247 |
+
# Limit context size to avoid token length issues
|
248 |
+
if len(context) > 4000:
|
249 |
+
context = context[:4000]
|
250 |
+
|
251 |
+
# Create prompt
|
252 |
+
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
253 |
+
|
254 |
+
# Handle inputs
|
255 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
256 |
+
|
257 |
+
# Move inputs to the right device if needed
|
258 |
+
if torch.cuda.is_available():
|
259 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
260 |
+
|
261 |
+
# Generate answer
|
262 |
output = model.generate(
|
263 |
**inputs,
|
264 |
max_new_tokens=300,
|
|
|
268 |
num_beams=3,
|
269 |
no_repeat_ngram_size=2
|
270 |
)
|
271 |
+
|
272 |
+
# Decode and format answer
|
273 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
274 |
if "Detailed answer:" in answer:
|
275 |
+
answer = answer.split("Detailed answer:")[-1].strip()
|
276 |
+
|
277 |
+
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
278 |
return answer.strip()
|
279 |
except Exception as e:
|
280 |
+
logger.error(f"Generation error: {str(e)}")
|
281 |
return "I couldn't generate a good answer based on the PDF content."
|
282 |
|
283 |
+
# API route
|
284 |
@app.route('/')
|
285 |
def home():
|
286 |
return jsonify({"message": "PDF QA API is running!"})
|
|
|
289 |
def ask():
|
290 |
file = request.files.get("pdf")
|
291 |
question = request.form.get("question", "")
|
292 |
+
filepath = None
|
293 |
|
294 |
if not file or not question:
|
295 |
return jsonify({"error": "Both PDF file and question are required"}), 400
|
296 |
|
|
|
|
|
|
|
|
|
297 |
try:
|
298 |
+
filename = secure_filename(file.filename)
|
299 |
+
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
300 |
+
file.save(filepath)
|
301 |
+
|
302 |
+
logger.info(f"Processing file: {filename}, Question: '{question}'")
|
303 |
+
|
304 |
+
# Process PDF and generate answer
|
305 |
text = extract_text(filepath)
|
306 |
+
if not text.strip():
|
307 |
+
return jsonify({"error": "Could not extract text from the PDF"}), 400
|
308 |
+
|
309 |
chunks = split_into_chunks(text)
|
310 |
+
if not chunks:
|
311 |
+
return jsonify({"error": "PDF content couldn't be processed"}), 400
|
312 |
+
|
313 |
+
try:
|
314 |
+
answer = answer_with_qa_pipeline(chunks, question)
|
315 |
+
except Exception as e:
|
316 |
+
logger.warning(f"QA pipeline failed: {str(e)}")
|
317 |
+
answer = ""
|
318 |
+
|
319 |
+
# If QA pipeline didn't give a good answer, try generation
|
320 |
+
if not answer or len(answer.strip()) < 20:
|
321 |
+
try:
|
322 |
+
logger.info("QA pipeline answer insufficient, trying generation...")
|
323 |
+
index, embeddings, chunks = setup_faiss(chunks)
|
324 |
+
answer = answer_with_generation(index, embeddings, chunks, question)
|
325 |
+
except Exception as e:
|
326 |
+
logger.error(f"Generation fallback failed: {str(e)}")
|
327 |
+
return jsonify({"error": "Failed to generate answer from PDF content"}), 500
|
328 |
|
329 |
return jsonify({"answer": answer})
|
330 |
|
331 |
except Exception as e:
|
332 |
+
logger.error(f"Error processing request: {str(e)}")
|
333 |
+
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
|
334 |
+
finally:
|
335 |
+
# Always clean up, even if errors occur
|
336 |
+
if filepath:
|
337 |
+
cleanup_temp_files(filepath)
|
338 |
|
339 |
if __name__ == "__main__":
|
340 |
+
try:
|
341 |
+
# Initialize models at startup
|
342 |
+
initialize_models()
|
343 |
+
logger.info("Starting Flask application")
|
344 |
+
app.run(host="0.0.0.0", port=7860)
|
345 |
+
except Exception as e:
|
346 |
+
logger.critical(f"Failed to start application: {str(e)}")
|