Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import tempfile
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
import pytesseract
|
7 |
+
from pdf2image import convert_from_bytes, convert_from_path
|
8 |
+
import numpy as np
|
9 |
+
import faiss
|
10 |
+
import torch
|
11 |
+
from flask import Flask, request, jsonify
|
12 |
+
from flask_cors import CORS
|
13 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
|
16 |
+
app = Flask(__name__)
|
17 |
+
CORS(app) # Enable CORS for cross-origin requests
|
18 |
+
|
19 |
+
# Device setup
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
print(f"Using device: {device}")
|
22 |
+
|
23 |
+
# Load models at startup (only once)
|
24 |
+
try:
|
25 |
+
print("Loading models...")
|
26 |
+
# Embedding model for semantic search
|
27 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
|
28 |
+
|
29 |
+
# QA pipeline for direct question answering
|
30 |
+
qa_pipeline = pipeline(
|
31 |
+
"question-answering",
|
32 |
+
model="distilbert-base-cased-distilled-squad",
|
33 |
+
tokenizer="distilbert-base-cased",
|
34 |
+
device=0 if device == "cuda" else -1
|
35 |
+
)
|
36 |
+
|
37 |
+
# Generation model for more detailed responses
|
38 |
+
gen_model_name = "distilgpt2" # Lightweight model suitable for free tier
|
39 |
+
gen_tokenizer = AutoTokenizer.from_pretrained(gen_model_name)
|
40 |
+
gen_model = AutoModelForCausalLM.from_pretrained(gen_model_name).to(device)
|
41 |
+
|
42 |
+
# Ensure pad token is set for the tokenizer
|
43 |
+
if gen_tokenizer.pad_token is None:
|
44 |
+
gen_tokenizer.pad_token = gen_tokenizer.eos_token
|
45 |
+
gen_model.config.pad_token_id = gen_model.config.eos_token_id
|
46 |
+
|
47 |
+
print("β
Models loaded successfully")
|
48 |
+
except Exception as e:
|
49 |
+
print(f"β Error loading models: {e}")
|
50 |
+
raise
|
51 |
+
|
52 |
+
# OCR fallback for scanned PDFs
|
53 |
+
def ocr_pdf(pdf_bytes):
|
54 |
+
try:
|
55 |
+
images = convert_from_bytes(pdf_bytes)
|
56 |
+
text = ""
|
57 |
+
for img in images:
|
58 |
+
text += pytesseract.image_to_string(img)
|
59 |
+
return text
|
60 |
+
except Exception as e:
|
61 |
+
print(f"β OCR error: {e}")
|
62 |
+
return ""
|
63 |
+
|
64 |
+
# Text extraction from standard PDFs
|
65 |
+
def extract_text(pdf_bytes):
|
66 |
+
try:
|
67 |
+
doc = fitz.open(stream=io.BytesIO(pdf_bytes), filetype="pdf")
|
68 |
+
text = ""
|
69 |
+
for page in doc:
|
70 |
+
text += page.get_text()
|
71 |
+
if len(text.strip()) < 50:
|
72 |
+
print("β οΈ Not enough text, using OCR fallback...")
|
73 |
+
text = ocr_pdf(pdf_bytes)
|
74 |
+
print("β
Text extraction complete")
|
75 |
+
return text
|
76 |
+
except Exception as e:
|
77 |
+
print(f"β Text extraction error: {e}")
|
78 |
+
return ""
|
79 |
+
|
80 |
+
# Split into chunks with overlap for better context
|
81 |
+
def split_into_chunks(text, max_tokens=300, overlap=50):
|
82 |
+
sentences = text.split('.')
|
83 |
+
chunks, current = [], ''
|
84 |
+
for sentence in sentences:
|
85 |
+
sentence = sentence.strip() + '.'
|
86 |
+
if len(current) + len(sentence) < max_tokens:
|
87 |
+
current += sentence
|
88 |
+
else:
|
89 |
+
chunks.append(current.strip())
|
90 |
+
# Keep some overlap for context continuity
|
91 |
+
words = current.split()
|
92 |
+
if len(words) > overlap:
|
93 |
+
current = ' '.join(words[-overlap:]) + ' ' + sentence
|
94 |
+
else:
|
95 |
+
current = sentence
|
96 |
+
if current:
|
97 |
+
chunks.append(current.strip())
|
98 |
+
return chunks
|
99 |
+
|
100 |
+
# Setup FAISS index for semantic search
|
101 |
+
def setup_faiss(chunks):
|
102 |
+
try:
|
103 |
+
embeddings = embedding_model.encode(chunks)
|
104 |
+
dimension = embeddings.shape[1]
|
105 |
+
|
106 |
+
index = faiss.IndexFlatL2(dimension)
|
107 |
+
index.add(embeddings)
|
108 |
+
return index, embeddings, chunks
|
109 |
+
except Exception as e:
|
110 |
+
print(f"β FAISS setup error: {e}")
|
111 |
+
raise
|
112 |
+
|
113 |
+
# Get answer using QA pipeline
|
114 |
+
def answer_with_qa_pipeline(chunks, question):
|
115 |
+
try:
|
116 |
+
# Join relevant chunks for context
|
117 |
+
context = " ".join(chunks[:5]) # Using first 5 chunks for simplicity
|
118 |
+
|
119 |
+
result = qa_pipeline(question=question, context=context)
|
120 |
+
return result['answer']
|
121 |
+
except Exception as e:
|
122 |
+
print(f"β QA pipeline error: {e}")
|
123 |
+
return "Could not generate answer with QA pipeline."
|
124 |
+
|
125 |
+
# Get answer using generation model
|
126 |
+
def answer_with_generation(index, embeddings, chunks, question):
|
127 |
+
try:
|
128 |
+
# Get embeddings for question
|
129 |
+
q_embedding = embedding_model.encode([question])
|
130 |
+
|
131 |
+
# Search in FAISS index for most relevant chunks
|
132 |
+
_, top_k_indices = index.search(q_embedding, k=3)
|
133 |
+
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
134 |
+
context = " ".join(relevant_chunks)
|
135 |
+
|
136 |
+
# Create a clear prompt
|
137 |
+
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
138 |
+
|
139 |
+
# Generate response
|
140 |
+
inputs = gen_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
141 |
+
output = gen_model.generate(
|
142 |
+
**inputs,
|
143 |
+
max_new_tokens=300,
|
144 |
+
temperature=0.7,
|
145 |
+
top_p=0.9,
|
146 |
+
do_sample=True,
|
147 |
+
num_beams=3,
|
148 |
+
no_repeat_ngram_size=2
|
149 |
+
)
|
150 |
+
answer = gen_tokenizer.decode(output[0], skip_special_tokens=True)
|
151 |
+
|
152 |
+
# Extract the answer part
|
153 |
+
if "Detailed answer:" in answer:
|
154 |
+
return answer.split("Detailed answer:")[-1].strip()
|
155 |
+
return answer
|
156 |
+
except Exception as e:
|
157 |
+
print(f"β Generation error: {e}")
|
158 |
+
return "Could not generate answer."
|
159 |
+
|
160 |
+
# Process PDF and answer question
|
161 |
+
def process_pdf_and_answer(pdf_bytes, question):
|
162 |
+
try:
|
163 |
+
# Extract text from PDF
|
164 |
+
text = extract_text(pdf_bytes)
|
165 |
+
if not text:
|
166 |
+
return "Could not extract text from the PDF."
|
167 |
+
|
168 |
+
# Split into chunks
|
169 |
+
chunks = split_into_chunks(text)
|
170 |
+
if not chunks:
|
171 |
+
return "Could not process the PDF content."
|
172 |
+
|
173 |
+
# Try QA pipeline first
|
174 |
+
print("Attempting to answer with QA pipeline...")
|
175 |
+
qa_answer = answer_with_qa_pipeline(chunks, question)
|
176 |
+
|
177 |
+
# If QA answer is too short or empty, try generation approach
|
178 |
+
if len(qa_answer) < 20:
|
179 |
+
print("QA answer too short, trying generation approach...")
|
180 |
+
index, embeddings, chunks = setup_faiss(chunks)
|
181 |
+
gen_answer = answer_with_generation(index, embeddings, chunks, question)
|
182 |
+
return gen_answer
|
183 |
+
|
184 |
+
return qa_answer
|
185 |
+
except Exception as e:
|
186 |
+
print(f"β Processing error: {e}")
|
187 |
+
return f"An error occurred: {str(e)}"
|
188 |
+
|
189 |
+
# API Endpoints
|
190 |
+
|
191 |
+
@app.route("/health", methods=["GET"])
|
192 |
+
def health_check():
|
193 |
+
"""Health check endpoint"""
|
194 |
+
return jsonify({"status": "healthy"})
|
195 |
+
|
196 |
+
@app.route("/api/ask", methods=["POST"])
|
197 |
+
def ask_question():
|
198 |
+
"""Endpoint for asking questions about a PDF"""
|
199 |
+
try:
|
200 |
+
if 'file' not in request.files:
|
201 |
+
return jsonify({"error": "No file provided"}), 400
|
202 |
+
|
203 |
+
file = request.files['file']
|
204 |
+
if not file or file.filename == '':
|
205 |
+
return jsonify({"error": "Invalid file"}), 400
|
206 |
+
|
207 |
+
if 'question' not in request.form:
|
208 |
+
return jsonify({"error": "No question provided"}), 400
|
209 |
+
|
210 |
+
question = request.form['question']
|
211 |
+
pdf_bytes = file.read()
|
212 |
+
|
213 |
+
answer = process_pdf_and_answer(pdf_bytes, question)
|
214 |
+
|
215 |
+
return jsonify({
|
216 |
+
"answer": answer,
|
217 |
+
"success": True
|
218 |
+
})
|
219 |
+
except Exception as e:
|
220 |
+
print(f"β API error: {e}")
|
221 |
+
return jsonify({"error": str(e), "success": False}), 500
|
222 |
+
|
223 |
+
if __name__ == "__main__":
|
224 |
+
# Get port from environment variable or use 7860 (Hugging Face Spaces default)
|
225 |
+
port = int(os.environ.get("PORT", 7860))
|
226 |
+
app.run(host="0.0.0.0", port=port)
|