Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,22 @@
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import fitz # PyMuPDF
|
3 |
import pytesseract
|
4 |
from pdf2image import convert_from_path
|
5 |
-
import torch
|
6 |
-
import faiss
|
7 |
-
import numpy as np
|
8 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# β
Device setup
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
# β
OCR
|
16 |
def ocr_pdf(pdf_path):
|
17 |
images = convert_from_path(pdf_path)
|
18 |
text = ""
|
@@ -20,19 +24,17 @@ def ocr_pdf(pdf_path):
|
|
20 |
text += pytesseract.image_to_string(img)
|
21 |
return text
|
22 |
|
23 |
-
# β
|
24 |
def extract_text(pdf_path):
|
25 |
doc = fitz.open(pdf_path)
|
26 |
text = ""
|
27 |
for page in doc:
|
28 |
text += page.get_text()
|
29 |
if len(text.strip()) < 50:
|
30 |
-
print("β οΈ Not enough text, using OCR fallback...")
|
31 |
text = ocr_pdf(pdf_path)
|
32 |
-
print("β
Text extraction complete")
|
33 |
return text
|
34 |
|
35 |
-
# β
|
36 |
def split_into_chunks(text, max_tokens=300, overlap=50):
|
37 |
sentences = text.split('.')
|
38 |
chunks, current = [], ''
|
@@ -51,16 +53,16 @@ def split_into_chunks(text, max_tokens=300, overlap=50):
|
|
51 |
chunks.append(current.strip())
|
52 |
return chunks
|
53 |
|
54 |
-
# β
FAISS
|
55 |
def setup_faiss(chunks):
|
56 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
57 |
embeddings = embedder.encode(chunks)
|
58 |
-
|
59 |
-
index = faiss.IndexFlatL2(
|
60 |
index.add(embeddings)
|
61 |
return index, embeddings, chunks
|
62 |
|
63 |
-
# β
QA
|
64 |
def answer_with_qa_pipeline(chunks, question):
|
65 |
qa_pipeline = pipeline(
|
66 |
"question-answering",
|
@@ -71,16 +73,14 @@ def answer_with_qa_pipeline(chunks, question):
|
|
71 |
context = " ".join(chunks[:5])
|
72 |
try:
|
73 |
result = qa_pipeline(question=question, context=context)
|
74 |
-
return result[
|
75 |
except:
|
76 |
-
return "
|
77 |
|
78 |
-
# β
Generation
|
79 |
def answer_with_generation(index, embeddings, chunks, question):
|
80 |
-
|
81 |
-
|
82 |
-
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
83 |
-
|
84 |
if tokenizer.pad_token is None:
|
85 |
tokenizer.pad_token = tokenizer.eos_token
|
86 |
model.config.pad_token_id = model.config.eos_token_id
|
@@ -94,44 +94,43 @@ def answer_with_generation(index, embeddings, chunks, question):
|
|
94 |
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
95 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
try:
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
return answer
|
111 |
-
except:
|
112 |
-
return "Could not generate answer."
|
113 |
-
|
114 |
-
# β
Main logic
|
115 |
-
def process_pdf(file, question):
|
116 |
-
pdf_path = file.name
|
117 |
-
text = extract_text(pdf_path)
|
118 |
-
chunks = split_into_chunks(text)
|
119 |
-
qa_answer = answer_with_qa_pipeline(chunks, question)
|
120 |
-
if len(qa_answer) < 20:
|
121 |
-
index, embeddings, chunks = setup_faiss(chunks)
|
122 |
-
return answer_with_generation(index, embeddings, chunks, question)
|
123 |
-
return qa_answer
|
124 |
-
|
125 |
-
# β
Gradio UI
|
126 |
-
iface = gr.Interface(
|
127 |
-
fn=process_pdf,
|
128 |
-
inputs=[
|
129 |
-
gr.File(label="Upload PDF"),
|
130 |
-
gr.Textbox(label="Ask a question", placeholder="What is this PDF about?")
|
131 |
-
],
|
132 |
-
outputs="text",
|
133 |
-
title="π PDF Chat Assistant",
|
134 |
-
description="Upload a PDF and ask anything about its content, even if it has scanned images!"
|
135 |
-
)
|
136 |
-
|
137 |
-
iface.launch()
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from werkzeug.utils import secure_filename
|
3 |
import os
|
4 |
+
import torch
|
5 |
import fitz # PyMuPDF
|
6 |
import pytesseract
|
7 |
from pdf2image import convert_from_path
|
|
|
|
|
|
|
8 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
+
import faiss
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
app = Flask(__name__)
|
14 |
+
UPLOAD_FOLDER = "uploads"
|
15 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
16 |
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
|
19 |
+
# β
OCR for scanned PDFs
|
20 |
def ocr_pdf(pdf_path):
|
21 |
images = convert_from_path(pdf_path)
|
22 |
text = ""
|
|
|
24 |
text += pytesseract.image_to_string(img)
|
25 |
return text
|
26 |
|
27 |
+
# β
Extract text
|
28 |
def extract_text(pdf_path):
|
29 |
doc = fitz.open(pdf_path)
|
30 |
text = ""
|
31 |
for page in doc:
|
32 |
text += page.get_text()
|
33 |
if len(text.strip()) < 50:
|
|
|
34 |
text = ocr_pdf(pdf_path)
|
|
|
35 |
return text
|
36 |
|
37 |
+
# β
Split into chunks
|
38 |
def split_into_chunks(text, max_tokens=300, overlap=50):
|
39 |
sentences = text.split('.')
|
40 |
chunks, current = [], ''
|
|
|
53 |
chunks.append(current.strip())
|
54 |
return chunks
|
55 |
|
56 |
+
# β
Setup FAISS
|
57 |
def setup_faiss(chunks):
|
58 |
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
59 |
embeddings = embedder.encode(chunks)
|
60 |
+
dim = embeddings.shape[1]
|
61 |
+
index = faiss.IndexFlatL2(dim)
|
62 |
index.add(embeddings)
|
63 |
return index, embeddings, chunks
|
64 |
|
65 |
+
# β
QA pipeline
|
66 |
def answer_with_qa_pipeline(chunks, question):
|
67 |
qa_pipeline = pipeline(
|
68 |
"question-answering",
|
|
|
73 |
context = " ".join(chunks[:5])
|
74 |
try:
|
75 |
result = qa_pipeline(question=question, context=context)
|
76 |
+
return result["answer"]
|
77 |
except:
|
78 |
+
return ""
|
79 |
|
80 |
+
# β
Generation fallback
|
81 |
def answer_with_generation(index, embeddings, chunks, question):
|
82 |
+
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
83 |
+
model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(device)
|
|
|
|
|
84 |
if tokenizer.pad_token is None:
|
85 |
tokenizer.pad_token = tokenizer.eos_token
|
86 |
model.config.pad_token_id = model.config.eos_token_id
|
|
|
94 |
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
|
95 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512).to(device)
|
96 |
|
97 |
+
output = model.generate(
|
98 |
+
**inputs,
|
99 |
+
max_new_tokens=300,
|
100 |
+
temperature=0.7,
|
101 |
+
top_p=0.9,
|
102 |
+
do_sample=True,
|
103 |
+
num_beams=3,
|
104 |
+
no_repeat_ngram_size=2
|
105 |
+
)
|
106 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
107 |
+
if "Detailed answer:" in answer:
|
108 |
+
return answer.split("Detailed answer:")[-1].strip()
|
109 |
+
return answer.strip()
|
110 |
+
|
111 |
+
# β
API route
|
112 |
+
@app.route('/ask', methods=['POST'])
|
113 |
+
def ask():
|
114 |
+
file = request.files.get("pdf")
|
115 |
+
question = request.form.get("question", "")
|
116 |
+
|
117 |
+
if not file or not question:
|
118 |
+
return jsonify({"error": "PDF and question required"}), 400
|
119 |
+
|
120 |
+
filename = secure_filename(file.filename)
|
121 |
+
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
122 |
+
file.save(filepath)
|
123 |
+
|
124 |
try:
|
125 |
+
text = extract_text(filepath)
|
126 |
+
chunks = split_into_chunks(text)
|
127 |
+
answer = answer_with_qa_pipeline(chunks, question)
|
128 |
+
if len(answer.strip()) < 20:
|
129 |
+
index, embeddings, chunks = setup_faiss(chunks)
|
130 |
+
answer = answer_with_generation(index, embeddings, chunks, question)
|
131 |
+
return jsonify({"answer": answer})
|
132 |
+
except Exception as e:
|
133 |
+
return jsonify({"error": str(e)}), 500
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|