Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
from werkzeug.utils import secure_filename
|
3 |
from flask_cors import CORS
|
4 |
import os
|
@@ -6,12 +6,14 @@ import torch
|
|
6 |
import fitz # PyMuPDF
|
7 |
import pytesseract
|
8 |
from pdf2image import convert_from_path
|
9 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import faiss
|
12 |
import numpy as np
|
13 |
import tempfile
|
14 |
from PIL import Image
|
|
|
|
|
15 |
|
16 |
import logging
|
17 |
|
@@ -73,83 +75,6 @@ def initialize_models():
|
|
73 |
logger.error(f"Error initializing models: {str(e)}")
|
74 |
raise
|
75 |
|
76 |
-
# Generation-based answering
|
77 |
-
def answer_with_generation(index, embeddings, chunks, question):
|
78 |
-
try:
|
79 |
-
logger.info(f"Answering with generation model: '{question}'")
|
80 |
-
global tokenizer, model
|
81 |
-
|
82 |
-
if tokenizer is None or model is None:
|
83 |
-
logger.info("Generation models not initialized, creating now...")
|
84 |
-
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
85 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
86 |
-
model = AutoModelForCausalLM.from_pretrained(
|
87 |
-
model_name,
|
88 |
-
torch_dtype=torch.float16,
|
89 |
-
device_map="cpu",
|
90 |
-
low_cpu_mem_usage=True
|
91 |
-
)
|
92 |
-
|
93 |
-
if tokenizer.pad_token is None:
|
94 |
-
tokenizer.pad_token = tokenizer.eos_token
|
95 |
-
model.config.pad_token_id = model.config.eos_token_id
|
96 |
-
|
97 |
-
# Get embeddings for question
|
98 |
-
q_embedding = embedder.encode([question])
|
99 |
-
|
100 |
-
# Find relevant chunks
|
101 |
-
_, top_k_indices = index.search(q_embedding, k=3)
|
102 |
-
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
103 |
-
context = " ".join(relevant_chunks)
|
104 |
-
|
105 |
-
# Limit context size
|
106 |
-
if len(context) > 2000:
|
107 |
-
context = context[:2000]
|
108 |
-
|
109 |
-
# Create prompt
|
110 |
-
prompt = f"""<|im_start|>system
|
111 |
-
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
112 |
-
<|im_end|>
|
113 |
-
<|im_start|>user
|
114 |
-
**Context**: {context}
|
115 |
-
|
116 |
-
**Question**: {question}
|
117 |
-
|
118 |
-
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
119 |
-
|
120 |
-
# Handle inputs
|
121 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
122 |
-
|
123 |
-
# Move inputs to CPU
|
124 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
125 |
-
|
126 |
-
# Generate answer
|
127 |
-
output = model.generate(
|
128 |
-
**inputs,
|
129 |
-
max_new_tokens=300,
|
130 |
-
temperature=0.7,
|
131 |
-
top_p=0.9,
|
132 |
-
do_sample=True,
|
133 |
-
num_beams=2,
|
134 |
-
no_repeat_ngram_size=2
|
135 |
-
)
|
136 |
-
|
137 |
-
# Decode and format answer
|
138 |
-
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
139 |
-
if "<|im_end|>" in answer:
|
140 |
-
answer = answer.split("<|im_end|>")[1].strip()
|
141 |
-
elif "Instruction" in answer:
|
142 |
-
answer = answer.split("Instruction")[1].strip()
|
143 |
-
|
144 |
-
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
145 |
-
return answer.strip()
|
146 |
-
except Exception as e:
|
147 |
-
logger.error(f"Generation error: {str(e)}")
|
148 |
-
return "I couldn't generate a good answer based on the PDF content."
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
# Cleanup function for temporary files
|
154 |
def cleanup_temp_files(filepath):
|
155 |
try:
|
@@ -297,19 +222,21 @@ def answer_with_qa_pipeline(chunks, question):
|
|
297 |
logger.error(f"QA pipeline error: {str(e)}")
|
298 |
return ""
|
299 |
|
300 |
-
# Generation-based answering
|
301 |
-
def
|
302 |
try:
|
303 |
-
logger.info(f"
|
304 |
global tokenizer, model
|
305 |
|
306 |
if tokenizer is None or model is None:
|
307 |
logger.info("Generation models not initialized, creating now...")
|
308 |
-
|
|
|
309 |
model = AutoModelForCausalLM.from_pretrained(
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
313 |
)
|
314 |
|
315 |
if tokenizer.pad_token is None:
|
@@ -324,41 +251,47 @@ def answer_with_generation(index, embeddings, chunks, question):
|
|
324 |
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
325 |
context = " ".join(relevant_chunks)
|
326 |
|
327 |
-
# Limit context size
|
328 |
-
if len(context) >
|
329 |
-
context = context[:
|
330 |
|
331 |
# Create prompt
|
332 |
-
prompt = f"
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
# Handle inputs
|
335 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
336 |
|
337 |
-
# Move inputs to
|
338 |
-
|
339 |
-
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
340 |
|
341 |
-
# Generate answer
|
342 |
-
|
343 |
**inputs,
|
|
|
344 |
max_new_tokens=300,
|
345 |
temperature=0.7,
|
346 |
top_p=0.9,
|
347 |
do_sample=True,
|
348 |
-
num_beams=
|
349 |
no_repeat_ngram_size=2
|
350 |
)
|
351 |
|
352 |
-
#
|
353 |
-
|
354 |
-
if "Detailed answer:" in answer:
|
355 |
-
answer = answer.split("Detailed answer:")[-1].strip()
|
356 |
|
357 |
-
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
358 |
-
return answer.strip()
|
359 |
except Exception as e:
|
360 |
-
logger.error(f"
|
361 |
-
|
|
|
|
|
|
|
|
|
362 |
|
363 |
# API route
|
364 |
@app.route('/')
|
@@ -369,6 +302,7 @@ def home():
|
|
369 |
def ask():
|
370 |
file = request.files.get("pdf")
|
371 |
question = request.form.get("question", "")
|
|
|
372 |
filepath = None
|
373 |
|
374 |
if not file or not question:
|
@@ -379,9 +313,9 @@ def ask():
|
|
379 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
380 |
file.save(filepath)
|
381 |
|
382 |
-
logger.info(f"Processing file: {filename}, Question: '{question}'")
|
383 |
|
384 |
-
# Process PDF and
|
385 |
text = extract_text(filepath)
|
386 |
if not text.strip():
|
387 |
return jsonify({"error": "Could not extract text from the PDF"}), 400
|
@@ -389,33 +323,137 @@ def ask():
|
|
389 |
chunks = split_into_chunks(text)
|
390 |
if not chunks:
|
391 |
return jsonify({"error": "PDF content couldn't be processed"}), 400
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
# If QA pipeline didn't give a good answer, try generation
|
400 |
-
if not answer or len(answer.strip()) < 20:
|
401 |
try:
|
402 |
-
|
403 |
-
|
404 |
-
|
|
|
405 |
except Exception as e:
|
406 |
-
logger.error(f"
|
407 |
-
return jsonify({"error": "
|
408 |
-
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
except Exception as e:
|
412 |
logger.error(f"Error processing request: {str(e)}")
|
413 |
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
|
414 |
finally:
|
415 |
-
#
|
416 |
-
|
|
|
417 |
cleanup_temp_files(filepath)
|
418 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
if __name__ == "__main__":
|
420 |
try:
|
421 |
# Initialize models at startup
|
|
|
1 |
+
from flask import Flask, request, jsonify, Response
|
2 |
from werkzeug.utils import secure_filename
|
3 |
from flask_cors import CORS
|
4 |
import os
|
|
|
6 |
import fitz # PyMuPDF
|
7 |
import pytesseract
|
8 |
from pdf2image import convert_from_path
|
9 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
import faiss
|
12 |
import numpy as np
|
13 |
import tempfile
|
14 |
from PIL import Image
|
15 |
+
import threading
|
16 |
+
import json
|
17 |
|
18 |
import logging
|
19 |
|
|
|
75 |
logger.error(f"Error initializing models: {str(e)}")
|
76 |
raise
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
# Cleanup function for temporary files
|
79 |
def cleanup_temp_files(filepath):
|
80 |
try:
|
|
|
222 |
logger.error(f"QA pipeline error: {str(e)}")
|
223 |
return ""
|
224 |
|
225 |
+
# Generation-based answering with streaming support
|
226 |
+
def generate_streaming_answer(index, embeddings, chunks, question, streamer):
|
227 |
try:
|
228 |
+
logger.info(f"Generating streaming answer for: '{question}'")
|
229 |
global tokenizer, model
|
230 |
|
231 |
if tokenizer is None or model is None:
|
232 |
logger.info("Generation models not initialized, creating now...")
|
233 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
234 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
235 |
model = AutoModelForCausalLM.from_pretrained(
|
236 |
+
model_name,
|
237 |
+
torch_dtype=torch.float16,
|
238 |
+
device_map="cpu",
|
239 |
+
low_cpu_mem_usage=True
|
240 |
)
|
241 |
|
242 |
if tokenizer.pad_token is None:
|
|
|
251 |
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
252 |
context = " ".join(relevant_chunks)
|
253 |
|
254 |
+
# Limit context size
|
255 |
+
if len(context) > 2000:
|
256 |
+
context = context[:2000]
|
257 |
|
258 |
# Create prompt
|
259 |
+
prompt = f"""<|im_start|>system
|
260 |
+
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
261 |
+
<|im_end|>
|
262 |
+
<|im_start|>user
|
263 |
+
**Context**: {context}
|
264 |
+
**Question**: {question}
|
265 |
+
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
266 |
|
267 |
# Handle inputs
|
268 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
269 |
|
270 |
+
# Move inputs to CPU
|
271 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
|
|
272 |
|
273 |
+
# Generate answer using the streamer
|
274 |
+
generate_kwargs = dict(
|
275 |
**inputs,
|
276 |
+
streamer=streamer,
|
277 |
max_new_tokens=300,
|
278 |
temperature=0.7,
|
279 |
top_p=0.9,
|
280 |
do_sample=True,
|
281 |
+
num_beams=2,
|
282 |
no_repeat_ngram_size=2
|
283 |
)
|
284 |
|
285 |
+
# Generate the answer (this will stream through the streamer)
|
286 |
+
model.generate(**generate_kwargs)
|
|
|
|
|
287 |
|
|
|
|
|
288 |
except Exception as e:
|
289 |
+
logger.error(f"Streaming generation error: {str(e)}")
|
290 |
+
# If an error occurs during streaming, push an error message to the streamer
|
291 |
+
try:
|
292 |
+
streamer.put("I encountered an error while generating the response.")
|
293 |
+
except:
|
294 |
+
pass
|
295 |
|
296 |
# API route
|
297 |
@app.route('/')
|
|
|
302 |
def ask():
|
303 |
file = request.files.get("pdf")
|
304 |
question = request.form.get("question", "")
|
305 |
+
streaming = request.form.get("streaming", "true").lower() == "true"
|
306 |
filepath = None
|
307 |
|
308 |
if not file or not question:
|
|
|
313 |
filepath = os.path.join(UPLOAD_FOLDER, filename)
|
314 |
file.save(filepath)
|
315 |
|
316 |
+
logger.info(f"Processing file: {filename}, Question: '{question}', Streaming: {streaming}")
|
317 |
|
318 |
+
# Process PDF and extract text
|
319 |
text = extract_text(filepath)
|
320 |
if not text.strip():
|
321 |
return jsonify({"error": "Could not extract text from the PDF"}), 400
|
|
|
323 |
chunks = split_into_chunks(text)
|
324 |
if not chunks:
|
325 |
return jsonify({"error": "PDF content couldn't be processed"}), 400
|
326 |
+
|
327 |
+
# Set up FAISS for semantic search
|
328 |
+
index, embeddings, chunks = setup_faiss(chunks)
|
329 |
+
|
330 |
+
# For non-streaming responses, use the regular approach
|
331 |
+
if not streaming:
|
|
|
|
|
|
|
332 |
try:
|
333 |
+
answer = answer_with_qa_pipeline(chunks, question)
|
334 |
+
if not answer or len(answer.strip()) < 20:
|
335 |
+
answer = answer_with_generation(index, embeddings, chunks, question)
|
336 |
+
return jsonify({"answer": answer})
|
337 |
except Exception as e:
|
338 |
+
logger.error(f"Error generating answer: {str(e)}")
|
339 |
+
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
|
340 |
+
|
341 |
+
# For streaming responses, use SSE
|
342 |
+
else:
|
343 |
+
try:
|
344 |
+
# Create a streamer for the text generation
|
345 |
+
streamer = TextIteratorStreamer(
|
346 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
347 |
+
)
|
348 |
+
|
349 |
+
# Start generation in a separate thread
|
350 |
+
thread = threading.Thread(
|
351 |
+
target=generate_streaming_answer,
|
352 |
+
args=(index, embeddings, chunks, question, streamer)
|
353 |
+
)
|
354 |
+
thread.start()
|
355 |
+
|
356 |
+
# Stream responses as Server-Sent Events (SSE)
|
357 |
+
def generate():
|
358 |
+
for new_text in streamer:
|
359 |
+
yield f"data: {json.dumps({'response': new_text})}\n\n"
|
360 |
+
yield "data: [DONE]\n\n"
|
361 |
+
|
362 |
+
# Cleanup will happen in a separate thread after the response is complete
|
363 |
+
cleanup_thread = threading.Thread(
|
364 |
+
target=cleanup_temp_files,
|
365 |
+
args=(filepath,)
|
366 |
+
)
|
367 |
+
cleanup_thread.daemon = True
|
368 |
+
cleanup_thread.start()
|
369 |
+
|
370 |
+
return Response(generate(), mimetype="text/event-stream")
|
371 |
+
|
372 |
+
except Exception as e:
|
373 |
+
logger.error(f"Error in streaming setup: {str(e)}")
|
374 |
+
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
|
375 |
+
|
376 |
except Exception as e:
|
377 |
logger.error(f"Error processing request: {str(e)}")
|
378 |
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
|
379 |
finally:
|
380 |
+
# For non-streaming responses, clean up immediately
|
381 |
+
# For streaming, we clean up in a separate thread
|
382 |
+
if filepath and not streaming:
|
383 |
cleanup_temp_files(filepath)
|
384 |
|
385 |
+
# Original generation function kept for non-streaming use
|
386 |
+
def answer_with_generation(index, embeddings, chunks, question):
|
387 |
+
try:
|
388 |
+
logger.info(f"Answering with generation model: '{question}'")
|
389 |
+
global tokenizer, model
|
390 |
+
|
391 |
+
if tokenizer is None or model is None:
|
392 |
+
logger.info("Generation models not initialized, creating now...")
|
393 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
394 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
395 |
+
model = AutoModelForCausalLM.from_pretrained(
|
396 |
+
model_name,
|
397 |
+
torch_dtype=torch.float16,
|
398 |
+
device_map="cpu",
|
399 |
+
low_cpu_mem_usage=True
|
400 |
+
)
|
401 |
+
|
402 |
+
if tokenizer.pad_token is None:
|
403 |
+
tokenizer.pad_token = tokenizer.eos_token
|
404 |
+
model.config.pad_token_id = model.config.eos_token_id
|
405 |
+
|
406 |
+
# Get embeddings for question
|
407 |
+
q_embedding = embedder.encode([question])
|
408 |
+
|
409 |
+
# Find relevant chunks
|
410 |
+
_, top_k_indices = index.search(q_embedding, k=3)
|
411 |
+
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
|
412 |
+
context = " ".join(relevant_chunks)
|
413 |
+
|
414 |
+
# Limit context size
|
415 |
+
if len(context) > 2000:
|
416 |
+
context = context[:2000]
|
417 |
+
|
418 |
+
# Create prompt
|
419 |
+
prompt = f"""<|im_start|>system
|
420 |
+
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
|
421 |
+
<|im_end|>
|
422 |
+
<|im_start|>user
|
423 |
+
**Context**: {context}
|
424 |
+
**Question**: {question}
|
425 |
+
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
|
426 |
+
|
427 |
+
# Handle inputs
|
428 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
429 |
+
|
430 |
+
# Move inputs to CPU
|
431 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
432 |
+
|
433 |
+
# Generate answer
|
434 |
+
output = model.generate(
|
435 |
+
**inputs,
|
436 |
+
max_new_tokens=300,
|
437 |
+
temperature=0.7,
|
438 |
+
top_p=0.9,
|
439 |
+
do_sample=True,
|
440 |
+
num_beams=2,
|
441 |
+
no_repeat_ngram_size=2
|
442 |
+
)
|
443 |
+
|
444 |
+
# Decode and format answer
|
445 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
446 |
+
if "<|im_end|>" in answer:
|
447 |
+
answer = answer.split("<|im_end|>")[1].strip()
|
448 |
+
elif "Instruction" in answer:
|
449 |
+
answer = answer.split("Instruction")[1].strip()
|
450 |
+
|
451 |
+
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
|
452 |
+
return answer.strip()
|
453 |
+
except Exception as e:
|
454 |
+
logger.error(f"Generation error: {str(e)}")
|
455 |
+
return "I couldn't generate a good answer based on the PDF content."
|
456 |
+
|
457 |
if __name__ == "__main__":
|
458 |
try:
|
459 |
# Initialize models at startup
|