File size: 7,905 Bytes
5124d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import tempfile
from pathlib import Path

import fugashi
import numpy as np
import pyopenjtalk
import torch
import torch.nn.functional as F
from transformers import HubertForCTC, Wav2Vec2Processor


class CandidateGenerator:
    """音声と日本語テキストから振り仮名の候補を生成"""

    def __init__(self, device: str = "cpu"):
        self.device = device

        dictionary_dir = Path(pyopenjtalk.__file__).parent / "dictionary"
        assert dictionary_dir.exists()

        # openjtalk には設定がハードコードされていて dicrc ファイルが存在しない
        with open(dictionary_dir / "dicrc", "w") as f:
            f.write(r"""cost-factor = 800
bos-feature = BOS/EOS,*,*,*,*,*,*,*,*
eval-size = 8
unk-eval-size = 4
node-format-yomi = %pS%f[7]
unk-format-yomi = %M
eos-format-yomi = \n
node-format-simple = %m\t%F-[0,1,2,3]\n
eos-format-simple = EOS\n
node-format-chasen = %m\t%f[7]\t%f[6]\t%F-[0,1,2,3]\t%f[4]\t%f[5]\n
unk-format-chasen = %m\t%m\t%m\t%F-[0,1,2,3]\t\t\n
eos-format-chasen = EOS\n
node-format-chasen2 = %M\t%f[7]\t%f[6]\t%F-[0,1,2,3]\t%f[4]\t%f[5]\n
unk-format-chasen2 = %M\t%m\t%m\t%F-[0,1,2,3]\t\t\n
eos-format-chasen2 = EOS\n
""")

        with tempfile.NamedTemporaryFile(mode="w+", delete=True) as tmp:
            self.tagger = fugashi.GenericTagger(f"-r {tmp.name} -d {dictionary_dir}")
            self.tagger_p = fugashi.GenericTagger(
                f"-r {tmp.name} -d {dictionary_dir} -p -F 0 -E %pc"
            )

        self.hankaku_to_zenkaku_table = str.maketrans(
            {chr(i): chr(i + 0xFEE0) for i in range(33, 127)}
        )

        HUBERT_MODEL_NAME = "prj-beatrice/japanese-hubert-base-phoneme-ctc-v2"
        self.phoneme_hubert = HubertForCTC.from_pretrained(HUBERT_MODEL_NAME).to(device)
        self.wav2vec_processor = Wav2Vec2Processor.from_pretrained(HUBERT_MODEL_NAME)

    def generate(self, text: str, audio_16khz: np.ndarray, num: int) -> dict:
        """テキストと音声から情報を抽出"""
        results = self.run_mecab(text, num)
        self.add_mecab_costs(results)
        self.add_phonemes(text, results)
        self.add_ctc_loss(audio_16khz, results)
        return results

    def run_mecab(self, text: str, num: int) -> dict:
        """MeCab を N-best で実行"""
        text = text.translate(self.hankaku_to_zenkaku_table)
        nbest: str = self.tagger.nbest(text, num=num)
        candidates = []
        for raw_candidate in (nbest + "\n").split("\nEOS\n"):
            if not raw_candidate:
                continue
            features = [line.replace("\t", ",") for line in raw_candidate.splitlines()]
            raw_candidate += "\nEOS"
            candidate = {
                "raw": raw_candidate,
                "features": features,
            }
            candidates.append(candidate)
        return {"candidates": candidates}

    def add_mecab_costs(self, results: dict):
        """Mecab コストを追加"""
        for candidate in results["candidates"]:
            raw_candidate = candidate["raw"]
            mecab_cost = int(self.tagger_p.parse(raw_candidate).lstrip("0"))
            candidate["mecab_cost"] = mecab_cost

    def add_phonemes(self, text: str, results: dict):
        """音素列等を追加"""
        for candidate in results["candidates"]:
            njd_result = pyopenjtalk.run_njd_from_mecab(candidate["features"])
            # modify_kanji_yomi は使わない
            postprocessed = pyopenjtalk.modify_filler_accent(njd_result)
            postprocessed = pyopenjtalk.retreat_acc_nuc(postprocessed)
            postprocessed = pyopenjtalk.modify_acc_after_chaining(postprocessed)
            postprocessed = pyopenjtalk.process_odori_features(postprocessed)
            labels = pyopenjtalk.make_label(postprocessed)
            phonemes = list(map(lambda s: s.split("-")[1].split("+")[0], labels[1:-1]))
            candidate["njd_result"] = njd_result
            candidate["postprocessed"] = postprocessed
            candidate["phonemes"] = phonemes

    def add_ctc_loss(self, audio_16khz: np.ndarray, results: dict):
        """CTC loss 等を追加"""
        SAMPLING_RATE = 16000
        # ReazonSpeech の音声認識モデルに倣ってパディングする
        audio_16khz = np.concatenate(
            [np.zeros(SAMPLING_RATE), audio_16khz, np.zeros(SAMPLING_RATE // 2)]
        )
        inputs = self.wav2vec_processor(
            audio_16khz,
            sampling_rate=SAMPLING_RATE,
            return_tensors="pt",
        ).to(self.device)
        with torch.no_grad():
            outputs = self.phoneme_hubert(**inputs)
            predicted_ids = outputs.logits.argmax(-1)
            predicted_phonemes_str: str = self.wav2vec_processor.decode(
                predicted_ids[0], spaces_between_special_tokens=True
            )
            predicted_phonemes: list[str] = predicted_phonemes_str.split()

            assert outputs.logits.ndim == 3, outputs.logits.shape

            # [length, 1, vocab_size]
            log_probs = F.log_softmax(outputs.logits, dim=-1).transpose(0, 1)
            # [1]
            ctc_input_lengths = torch.tensor([log_probs.size(0)], device=self.device)

            phonemes_candidates = {predicted_phonemes_str: predicted_phonemes}
            for candidate in results["candidates"]:
                phonemes_str = " ".join(candidate["phonemes"])
                phonemes_candidates[phonemes_str] = candidate["phonemes"]

            phoneme_ids = []
            ctc_target_lengths = []
            for phonemes_str, phonemes in phonemes_candidates.items():
                candidate_phoneme_ids = (
                    self.wav2vec_processor.tokenizer.convert_tokens_to_ids(phonemes)
                )
                phoneme_ids.extend(candidate_phoneme_ids)
                ctc_target_lengths.append(len(candidate_phoneme_ids))
            phoneme_ids = torch.tensor(phoneme_ids, device=self.device)
            ctc_target_lengths = torch.tensor(ctc_target_lengths, device=self.device)
            assert phoneme_ids.ndim == 1, phoneme_ids.shape

            # Transformers が cudnn を無効にしていたのでそれに倣う
            with torch.backends.cudnn.flags(enabled=False):
                loss = F.ctc_loss(
                    log_probs.expand(-1, len(ctc_target_lengths), -1),
                    phoneme_ids,
                    ctc_input_lengths.expand(len(ctc_target_lengths)),
                    ctc_target_lengths,
                    blank=self.phoneme_hubert.config.pad_token_id,
                    reduction="none",
                )

            phonemes_str_to_ctc_loss = {}
            for phonemes_str, loss in zip(phonemes_candidates, loss.cpu().tolist()):
                phonemes_str_to_ctc_loss[phonemes_str] = loss

            for candidate in results["candidates"]:
                phonemes_str = " ".join(candidate["phonemes"])
                candidate["ctc_loss"] = phonemes_str_to_ctc_loss[phonemes_str]
            results["hubert_logits"] = outputs.logits
            results["hubert_prediction"] = {
                "phonemes": predicted_phonemes,
                "ctc_loss": phonemes_str_to_ctc_loss[predicted_phonemes_str],
            }


if __name__ == "__main__":
    import sys

    import librosa

    device = "cuda" if torch.cuda.is_available() else "cpu"
    candidate_generator = CandidateGenerator(device)
    text = sys.argv[1]
    audio_file = Path(sys.argv[2])
    audio_16khz, sr = librosa.load(audio_file, sr=16000)
    results = candidate_generator.generate(text, audio_16khz, num=10)

    for candidate in results["candidates"]:
        print(
            f"Cost: {candidate['mecab_cost']}, CTC Loss: {candidate['ctc_loss']:.3f}, Phonemes: {' '.join(candidate['phonemes'])}"
        )
    print(results)

    # uv run src/__init__.py "テキスト" path/to/audio.wav