File size: 7,905 Bytes
5124d5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import tempfile
from pathlib import Path
import fugashi
import numpy as np
import pyopenjtalk
import torch
import torch.nn.functional as F
from transformers import HubertForCTC, Wav2Vec2Processor
class CandidateGenerator:
"""音声と日本語テキストから振り仮名の候補を生成"""
def __init__(self, device: str = "cpu"):
self.device = device
dictionary_dir = Path(pyopenjtalk.__file__).parent / "dictionary"
assert dictionary_dir.exists()
# openjtalk には設定がハードコードされていて dicrc ファイルが存在しない
with open(dictionary_dir / "dicrc", "w") as f:
f.write(r"""cost-factor = 800
bos-feature = BOS/EOS,*,*,*,*,*,*,*,*
eval-size = 8
unk-eval-size = 4
node-format-yomi = %pS%f[7]
unk-format-yomi = %M
eos-format-yomi = \n
node-format-simple = %m\t%F-[0,1,2,3]\n
eos-format-simple = EOS\n
node-format-chasen = %m\t%f[7]\t%f[6]\t%F-[0,1,2,3]\t%f[4]\t%f[5]\n
unk-format-chasen = %m\t%m\t%m\t%F-[0,1,2,3]\t\t\n
eos-format-chasen = EOS\n
node-format-chasen2 = %M\t%f[7]\t%f[6]\t%F-[0,1,2,3]\t%f[4]\t%f[5]\n
unk-format-chasen2 = %M\t%m\t%m\t%F-[0,1,2,3]\t\t\n
eos-format-chasen2 = EOS\n
""")
with tempfile.NamedTemporaryFile(mode="w+", delete=True) as tmp:
self.tagger = fugashi.GenericTagger(f"-r {tmp.name} -d {dictionary_dir}")
self.tagger_p = fugashi.GenericTagger(
f"-r {tmp.name} -d {dictionary_dir} -p -F 0 -E %pc"
)
self.hankaku_to_zenkaku_table = str.maketrans(
{chr(i): chr(i + 0xFEE0) for i in range(33, 127)}
)
HUBERT_MODEL_NAME = "prj-beatrice/japanese-hubert-base-phoneme-ctc-v2"
self.phoneme_hubert = HubertForCTC.from_pretrained(HUBERT_MODEL_NAME).to(device)
self.wav2vec_processor = Wav2Vec2Processor.from_pretrained(HUBERT_MODEL_NAME)
def generate(self, text: str, audio_16khz: np.ndarray, num: int) -> dict:
"""テキストと音声から情報を抽出"""
results = self.run_mecab(text, num)
self.add_mecab_costs(results)
self.add_phonemes(text, results)
self.add_ctc_loss(audio_16khz, results)
return results
def run_mecab(self, text: str, num: int) -> dict:
"""MeCab を N-best で実行"""
text = text.translate(self.hankaku_to_zenkaku_table)
nbest: str = self.tagger.nbest(text, num=num)
candidates = []
for raw_candidate in (nbest + "\n").split("\nEOS\n"):
if not raw_candidate:
continue
features = [line.replace("\t", ",") for line in raw_candidate.splitlines()]
raw_candidate += "\nEOS"
candidate = {
"raw": raw_candidate,
"features": features,
}
candidates.append(candidate)
return {"candidates": candidates}
def add_mecab_costs(self, results: dict):
"""Mecab コストを追加"""
for candidate in results["candidates"]:
raw_candidate = candidate["raw"]
mecab_cost = int(self.tagger_p.parse(raw_candidate).lstrip("0"))
candidate["mecab_cost"] = mecab_cost
def add_phonemes(self, text: str, results: dict):
"""音素列等を追加"""
for candidate in results["candidates"]:
njd_result = pyopenjtalk.run_njd_from_mecab(candidate["features"])
# modify_kanji_yomi は使わない
postprocessed = pyopenjtalk.modify_filler_accent(njd_result)
postprocessed = pyopenjtalk.retreat_acc_nuc(postprocessed)
postprocessed = pyopenjtalk.modify_acc_after_chaining(postprocessed)
postprocessed = pyopenjtalk.process_odori_features(postprocessed)
labels = pyopenjtalk.make_label(postprocessed)
phonemes = list(map(lambda s: s.split("-")[1].split("+")[0], labels[1:-1]))
candidate["njd_result"] = njd_result
candidate["postprocessed"] = postprocessed
candidate["phonemes"] = phonemes
def add_ctc_loss(self, audio_16khz: np.ndarray, results: dict):
"""CTC loss 等を追加"""
SAMPLING_RATE = 16000
# ReazonSpeech の音声認識モデルに倣ってパディングする
audio_16khz = np.concatenate(
[np.zeros(SAMPLING_RATE), audio_16khz, np.zeros(SAMPLING_RATE // 2)]
)
inputs = self.wav2vec_processor(
audio_16khz,
sampling_rate=SAMPLING_RATE,
return_tensors="pt",
).to(self.device)
with torch.no_grad():
outputs = self.phoneme_hubert(**inputs)
predicted_ids = outputs.logits.argmax(-1)
predicted_phonemes_str: str = self.wav2vec_processor.decode(
predicted_ids[0], spaces_between_special_tokens=True
)
predicted_phonemes: list[str] = predicted_phonemes_str.split()
assert outputs.logits.ndim == 3, outputs.logits.shape
# [length, 1, vocab_size]
log_probs = F.log_softmax(outputs.logits, dim=-1).transpose(0, 1)
# [1]
ctc_input_lengths = torch.tensor([log_probs.size(0)], device=self.device)
phonemes_candidates = {predicted_phonemes_str: predicted_phonemes}
for candidate in results["candidates"]:
phonemes_str = " ".join(candidate["phonemes"])
phonemes_candidates[phonemes_str] = candidate["phonemes"]
phoneme_ids = []
ctc_target_lengths = []
for phonemes_str, phonemes in phonemes_candidates.items():
candidate_phoneme_ids = (
self.wav2vec_processor.tokenizer.convert_tokens_to_ids(phonemes)
)
phoneme_ids.extend(candidate_phoneme_ids)
ctc_target_lengths.append(len(candidate_phoneme_ids))
phoneme_ids = torch.tensor(phoneme_ids, device=self.device)
ctc_target_lengths = torch.tensor(ctc_target_lengths, device=self.device)
assert phoneme_ids.ndim == 1, phoneme_ids.shape
# Transformers が cudnn を無効にしていたのでそれに倣う
with torch.backends.cudnn.flags(enabled=False):
loss = F.ctc_loss(
log_probs.expand(-1, len(ctc_target_lengths), -1),
phoneme_ids,
ctc_input_lengths.expand(len(ctc_target_lengths)),
ctc_target_lengths,
blank=self.phoneme_hubert.config.pad_token_id,
reduction="none",
)
phonemes_str_to_ctc_loss = {}
for phonemes_str, loss in zip(phonemes_candidates, loss.cpu().tolist()):
phonemes_str_to_ctc_loss[phonemes_str] = loss
for candidate in results["candidates"]:
phonemes_str = " ".join(candidate["phonemes"])
candidate["ctc_loss"] = phonemes_str_to_ctc_loss[phonemes_str]
results["hubert_logits"] = outputs.logits
results["hubert_prediction"] = {
"phonemes": predicted_phonemes,
"ctc_loss": phonemes_str_to_ctc_loss[predicted_phonemes_str],
}
if __name__ == "__main__":
import sys
import librosa
device = "cuda" if torch.cuda.is_available() else "cpu"
candidate_generator = CandidateGenerator(device)
text = sys.argv[1]
audio_file = Path(sys.argv[2])
audio_16khz, sr = librosa.load(audio_file, sr=16000)
results = candidate_generator.generate(text, audio_16khz, num=10)
for candidate in results["candidates"]:
print(
f"Cost: {candidate['mecab_cost']}, CTC Loss: {candidate['ctc_loss']:.3f}, Phonemes: {' '.join(candidate['phonemes'])}"
)
print(results)
# uv run src/__init__.py "テキスト" path/to/audio.wav
|