Spaces:
Sleeping
Sleeping
File size: 3,542 Bytes
82db26d bedb9ce 82db26d bedb9ce 82db26d 608d3dd 82db26d 608d3dd 82db26d 608d3dd bedb9ce c59a6b0 608d3dd 7e7663c 608d3dd 82db26d 11a01db 82db26d 9a3aec4 bedb9ce 11a01db 963ad3e c59a6b0 bedb9ce 963ad3e 8433386 9a3aec4 d0fd701 9a3aec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import firebase_admin
# from firebase_admin import credentials
# from firebase_admin import firestore
from firebase_admin import credentials, initialize_app, storage
import io
from fastapi import FastAPI, File, UploadFile
from werkzeug.utils import secure_filename
# import speech_recognition as sr
import subprocess
import os
import requests
import random
# import pandas as pd
from pydub import AudioSegment
from datetime import datetime
from datetime import date
# import numpy as np
# from sklearn.ensemble import RandomForestRegressor
import shutil
import json
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from pydantic import BaseModel
# from typing import Annotated
# from transformers import BertTokenizerFast, EncoderDecoderModel
# import torch
import re
# from transformers import AutoTokenizer, T5ForConditionalGeneration
from fastapi import Form
# from transformers import AutoModelForSequenceClassification
# from transformers import TFAutoModelForSequenceClassification
# from transformers import AutoTokenizer, AutoConfig
import numpy as np
import io
import requests
import time
import json
import asyncio
import time
from pymongo.mongo_client import MongoClient
import threading
from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
# now = datetime.now()
# UPLOAD_FOLDER = '/files'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png',
# 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'}
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')
c=0
@app.on_event("startup")
async def startup_event():
print("on startup")
t = threading.Thread(target=do_ping) # Pass parameters to func2
t.start()
t1 = threading.Thread(target=do_delete) # Pass parameters to func2
t1.start()
@app.get("/")
async def get_answer( ):
url = 'https://open-ai-ping-eight.vercel.app/'
return "ping"
def do_delete():
url = 'https://audiospace-1-u9912847.deta.app/delete'
while True:
try:
print("inside delete ping ")
x = requests.get(url,timeout=19, verify=False)
print(x.text)
time.sleep(1800)
except:
continue
def do_ping():
# url = 'https://open-ai-ping-eight.vercel.app/'
# url1 = 'https://open-ai-ping-eight.vercel.app/1'
# url2 = 'https://open-ai-ping-eight.vercel.app/2'
urls= ['https://ping_deta-1-a5162851.deta.app/',
'https://ping_deta-1-a5162851.deta.app/1',
'https://ping_deta-1-a5162851.deta.app/11',
'https://ping_deta-1-a5162851.deta.app/2',
'https://ping_deta-1-a5162851.deta.app/3',
'https://ping_deta-1-a5162851.deta.app/4']
while True:
try:
print("inside ping ")
for url in urls:
try:
x=requests.get(url, timeout=20, verify=False)
print(x.text)
except Exception as e:
print(e)
pass
time.sleep(60)
print("ping done")
except:
continue
|