import firebase_admin from firebase_admin import credentials from firebase_admin import firestore import io from fastapi import FastAPI, File, UploadFile from werkzeug.utils import secure_filename import speech_recognition as sr import subprocess import os import requests import random import pandas as pd from pydub import AudioSegment from datetime import datetime from datetime import date import numpy as np from sklearn.ensemble import RandomForestRegressor import shutil import json from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline from pydantic import BaseModel from typing import Annotated from fastapi import Form class Query(BaseModel): question: str context: str model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) # from pyngrok import ngrok, conf # from datetime import datetime from fastapi import FastAPI, Request, Depends, UploadFile, File from fastapi.exceptions import HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse # from config import NGROK_AUTH_TOKEN # now = datetime.now() # UPLOAD_FOLDER = '/files' # ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', # 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'} app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=['*'], allow_headers=['*'], ) # cred = credentials.Certificate('key.json') # app1 = firebase_admin.initialize_app(cred) # db = firestore.client() # data_frame = pd.read_csv('data.csv') @app.on_event("startup") async def startup_event(): print("on startup") @app.post("/") async def get_answer(q: Query ): QA_input = { 'question': q.question , 'context': q.context } res = nlp(QA_input) print(res) return res return "hello" @app.get("/predict") def get_prediction(address: str, day: int): return predict.get(address, day)