File size: 2,894 Bytes
7de7e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# import firebase_admin
# from firebase_admin import credentials
# from firebase_admin import firestore
import io
from fastapi import FastAPI, File, UploadFile
from werkzeug.utils import secure_filename
# import speech_recognition as sr
import subprocess
import os
import requests
import random
import pandas as pd
from pydub import AudioSegment
from datetime import datetime
from datetime import date
import numpy as np
# from sklearn.ensemble import RandomForestRegressor
import shutil
import json
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
from pydantic import BaseModel
from typing import Annotated
# from transformers import BertTokenizerFast, EncoderDecoderModel
import torch
import re
# from transformers import AutoTokenizer, T5ForConditionalGeneration
from fastapi import Form
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax



def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)




class Query(BaseModel):
    text: str

   


from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse


# now = datetime.now()


# UPLOAD_FOLDER = '/files'
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png',
#                       'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'}


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=['*'],
    allow_credentials=True,
    allow_methods=['*'],
    allow_headers=['*'],
)


# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')



@app.on_event("startup")
async def startup_event():
   print("on startup")

   


@app.post("/")
async def get_answer(q: Query ):

    
    
    text = q.text
    text = preprocess(text)
    encoded_input = tokenizer(text, return_tensors='pt')
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = softmax(scores)
    # print(scores)
    ranking = np.argsort(scores)
    ranking = ranking[::-1]
    dict={}
    for i in range(scores.shape[0]):
     l = config.id2label[ranking[i]]
     s = scores[ranking[i]]
     dict[str(l)]= str(s)

    return dict

    
    
   
   
    return "hello"