Spaces:
Sleeping
Sleeping
IZERE HIRWA Roger
commited on
Commit
·
cbb1938
1
Parent(s):
7d4aa82
p0,lo
Browse files
app.py
CHANGED
@@ -39,13 +39,16 @@ app = Flask(__name__)
|
|
39 |
CORS(app)
|
40 |
|
41 |
def segment(image_pil: Image.Image, prompt: str):
|
42 |
-
# Convert PIL image to numpy array
|
43 |
-
image_np = np.array(image_pil)
|
|
|
|
|
|
|
44 |
|
45 |
# Run GroundingDINO to get boxes for the prompt
|
46 |
boxes, _, _ = predict(
|
47 |
model=grounder,
|
48 |
-
image=
|
49 |
caption=prompt,
|
50 |
box_threshold=0.3,
|
51 |
text_threshold=0.25,
|
@@ -56,7 +59,7 @@ def segment(image_pil: Image.Image, prompt: str):
|
|
56 |
|
57 |
# 2) Largest box → mask via SAM
|
58 |
box = boxes[np.argmax((boxes[:,2]-boxes[:,0])*(boxes[:,3]-boxes[:,1]))]
|
59 |
-
predictor.set_image(
|
60 |
masks, _, _ = predictor.predict(box=box)
|
61 |
mask = masks[0] # boolean HxW
|
62 |
|
|
|
39 |
CORS(app)
|
40 |
|
41 |
def segment(image_pil: Image.Image, prompt: str):
|
42 |
+
# Convert PIL image to numpy array and normalize
|
43 |
+
image_np = np.array(image_pil).astype(np.float32) / 255.0 # Normalize to [0, 1]
|
44 |
+
|
45 |
+
# Convert numpy array to torch tensor
|
46 |
+
image_tensor = torch.tensor(image_np).permute(2, 0, 1).unsqueeze(0).to(device) # Convert to CHW format
|
47 |
|
48 |
# Run GroundingDINO to get boxes for the prompt
|
49 |
boxes, _, _ = predict(
|
50 |
model=grounder,
|
51 |
+
image=image_tensor, # Pass normalized tensor
|
52 |
caption=prompt,
|
53 |
box_threshold=0.3,
|
54 |
text_threshold=0.25,
|
|
|
59 |
|
60 |
# 2) Largest box → mask via SAM
|
61 |
box = boxes[np.argmax((boxes[:,2]-boxes[:,0])*(boxes[:,3]-boxes[:,1]))]
|
62 |
+
predictor.set_image(np.array(image_pil))
|
63 |
masks, _, _ = predictor.predict(box=box)
|
64 |
mask = masks[0] # boolean HxW
|
65 |
|