File size: 16,652 Bytes
5753ed4
dd5d745
 
ed74fda
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d745
 
ed74fda
dd5d745
 
ed74fda
 
 
 
 
 
dd5d745
 
 
ed74fda
dd5d745
ed74fda
 
dd5d745
ed74fda
 
 
 
 
 
dd5d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
 
 
 
 
 
 
 
 
dd5d745
ed74fda
 
 
 
 
 
dd5d745
 
 
 
 
 
 
 
 
 
 
 
ed74fda
 
 
 
 
 
 
 
dd5d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
dd5d745
 
 
 
 
ed74fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d745
ed74fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d745
 
 
5753ed4
 
 
 
 
dd5d745
 
 
 
 
 
ed74fda
 
dd5d745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
dd5d745
 
 
 
 
 
ed74fda
 
 
 
 
 
dd5d745
ed74fda
 
 
dd5d745
 
ed74fda
dd5d745
ed74fda
 
dd5d745
ed74fda
dd5d745
 
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
 
dd5d745
ed74fda
dd5d745
 
 
 
 
ed74fda
 
 
 
 
 
dd5d745
ed74fda
 
 
dd5d745
 
ed74fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d745
ed74fda
 
 
 
dd5d745
 
 
 
 
 
 
 
 
 
ed74fda
dd5d745
ed74fda
 
 
dd5d745
ed74fda
 
dd5d745
 
ed74fda
dd5d745
ed74fda
 
 
 
 
 
dd5d745
ed74fda
dd5d745
ed74fda
dd5d745
 
5753ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd5d745
 
 
 
ed74fda
dd5d745
 
 
 
 
 
 
5753ed4
dd5d745
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
dd5d745
ed74fda
5753ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed74fda
dd5d745
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from flask import Flask, request, jsonify, send_from_directory
from werkzeug.utils import secure_filename
from werkzeug.security import generate_password_hash, check_password_hash
import pytesseract
from PIL import Image
import numpy as np
import faiss
import os
import pickle
from pdf2image import convert_from_bytes
import torch
import clip
import io
import json
import uuid
from datetime import datetime, timedelta
import jwt
import sqlite3
import tempfile

app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key-change-this-in-production'

# Security configuration
SECRET_KEY = "your-secret-key-change-this-in-production"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30

# Set CLIP cache to writable directory
os.environ['CLIP_CACHE'] = '/app/clip_cache'
os.makedirs('/app/clip_cache', exist_ok=True)

# Directories
INDEX_PATH = "data/index.faiss"
LABELS_PATH = "data/labels.pkl"
DATABASE_PATH = "data/documents.db"
UPLOADS_DIR = "data/uploads"

os.makedirs("data", exist_ok=True)
os.makedirs("static", exist_ok=True)
os.makedirs(UPLOADS_DIR, exist_ok=True)

# Initialize database
def init_db():
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()
    
    # Users table
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS users (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            username TEXT UNIQUE NOT NULL,
            password_hash TEXT NOT NULL,
            is_active BOOLEAN DEFAULT TRUE
        )
    ''')
    
    # Documents table
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS documents (
            id TEXT PRIMARY KEY,
            filename TEXT NOT NULL,
            original_filename TEXT NOT NULL,
            category TEXT NOT NULL,
            similarity REAL NOT NULL,
            ocr_text TEXT,
            upload_date TEXT NOT NULL,
            file_path TEXT NOT NULL
        )
    ''')
    
    # Insert default admin user if not exists
    cursor.execute('SELECT * FROM users WHERE username = ?', ('admin',))
    if not cursor.fetchone():
        admin_hash = generate_password_hash('admin123')
        cursor.execute('INSERT INTO users (username, password_hash) VALUES (?, ?)', 
                      ('admin', admin_hash))
    
    conn.commit()
    conn.close()

init_db()

# Initialize index and labels
index = faiss.IndexFlatL2(512)
labels = []

if os.path.exists(INDEX_PATH) and os.path.exists(LABELS_PATH):
    try:
        index = faiss.read_index(INDEX_PATH)
        with open(LABELS_PATH, "rb") as f:
            labels = pickle.load(f)
        print(f"βœ… Loaded existing index with {len(labels)} labels")
    except Exception as e:
        print(f"⚠️ Failed to load existing index: {e}")
        if os.path.exists(INDEX_PATH):
            os.remove(INDEX_PATH)
        if os.path.exists(LABELS_PATH):
            os.remove(LABELS_PATH)

# Initialize CLIP model with custom cache
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
    clip_model, preprocess = clip.load("ViT-B/32", device=device, download_root='/app/clip_cache')
    print("βœ… CLIP model loaded successfully")
except Exception as e:
    print(f"❌ Failed to load CLIP model: {e}")
    # Fallback initialization
    clip_model = None
    preprocess = None

# Helper functions
def save_index():
    try:
        faiss.write_index(index, INDEX_PATH)
        with open(LABELS_PATH, "wb") as f:
            pickle.dump(labels, f)
    except Exception as e:
        print(f"❌ Failed to save index: {e}")

def authenticate_user(username: str, password: str):
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()
    cursor.execute('SELECT password_hash FROM users WHERE username = ? AND is_active = TRUE', (username,))
    result = cursor.fetchone()
    conn.close()
    
    if result and check_password_hash(result[0], password):
        return {"username": username}
    return None

def create_access_token(data: dict):
    expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
    to_encode = data.copy()
    to_encode.update({"exp": expire})
    return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)

def verify_token(token: str):
    try:
        payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
        username = payload.get("sub")
        return username if username else None
    except jwt.PyJWTError:
        return None

def image_from_pdf(pdf_bytes):
    try:
        images = convert_from_bytes(pdf_bytes, dpi=200)
        return images[0]
    except Exception as e:
        print(f"❌ PDF conversion error: {e}")
        return None

def extract_text(image):
    try:
        if image.mode != 'RGB':
            image = image.convert('RGB')
        custom_config = r'--oem 3 --psm 6'
        text = pytesseract.image_to_string(image, config=custom_config)
        return text.strip() if text.strip() else "❓ No text detected"
    except Exception as e:
        return f"❌ OCR error: {str(e)}"

def get_clip_embedding(image):
    try:
        if clip_model is None:
            return None
        if image.mode != 'RGB':
            image = image.convert('RGB')
        image_input = preprocess(image).unsqueeze(0).to(device)
        with torch.no_grad():
            image_features = clip_model.encode_image(image_input)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        return image_features.cpu().numpy()[0]
    except Exception as e:
        print(f"❌ CLIP embedding error: {e}")
        return None

def save_uploaded_file(file_content: bytes, filename: str) -> str:
    file_id = str(uuid.uuid4())
    file_extension = os.path.splitext(filename)[1]
    saved_filename = f"{file_id}{file_extension}"
    file_path = os.path.join(UPLOADS_DIR, saved_filename)
    
    with open(file_path, 'wb') as f:
        f.write(file_content)
    
    return saved_filename

# Routes
@app.route("/")
def dashboard():
    return send_from_directory('static', 'index.html')

@app.route("/static/<path:filename>")
def static_files(filename):
    return send_from_directory('static', filename)

@app.route("/api/login", methods=["POST"])
def login():
    username = request.form.get("username")
    password = request.form.get("password")
    
    user = authenticate_user(username, password)
    if not user:
        return jsonify({"detail": "Incorrect username or password"}), 401
    
    access_token = create_access_token(data={"sub": user["username"]})
    return jsonify({"access_token": access_token, "token_type": "bearer", "username": user["username"]})

@app.route("/api/upload-category", methods=["POST"])
def upload_category():
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    try:
        label = request.form.get("label")
        file = request.files.get("file")
        if not label or not file:
            return jsonify({"error": "Missing label or file"}), 400

        file_content = file.read()
        if file.content_type and file.content_type.startswith('application/pdf'):
            image = image_from_pdf(file_content)
        else:
            image = Image.open(io.BytesIO(file_content))

        if image is None:
            return jsonify({"error": "Failed to process image"}), 400

        embedding = get_clip_embedding(image)
        if embedding is None:
            return jsonify({"error": "Failed to generate embedding"}), 400

        index.add(np.array([embedding]))
        labels.append(label.strip())
        save_index()
        
        return jsonify({"message": f"βœ… Added category '{label}' (Total: {len(labels)} categories)", "status": "success"})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route("/api/classify-document", methods=["POST"])
def classify_document():
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    try:
        if len(labels) == 0:
            return jsonify({"error": "No categories in database. Please add some first."}), 400
        
        file = request.files.get("file")
        if not file:
            return jsonify({"error": "Missing file"}), 400

        file_content = file.read()
        if file.content_type and file.content_type.startswith('application/pdf'):
            image = image_from_pdf(file_content)
        else:
            image = Image.open(io.BytesIO(file_content))

        if image is None:
            return jsonify({"error": "Failed to process image"}), 400

        embedding = get_clip_embedding(image)
        if embedding is None:
            return jsonify({"error": "Failed to generate embedding"}), 400

        k = min(3, len(labels))
        D, I = index.search(np.array([embedding]), k=k)
        
        if len(labels) > 0 and I[0][0] < len(labels):
            similarity = 1 - D[0][0]
            confidence_threshold = 0.35
            
            best_match = labels[I[0][0]]
            matches = []
            
            for i in range(min(k, len(D[0]))):
                if I[0][i] < len(labels):
                    sim = 1 - D[0][i]
                    matches.append({"category": labels[I[0][i]], "similarity": round(sim, 3)})
            
            # Save classified document to SQLite
            if similarity >= confidence_threshold:
                saved_filename = save_uploaded_file(file_content, file.filename)
                ocr_text = extract_text(image)
                
                document_id = str(uuid.uuid4())
                conn = sqlite3.connect(DATABASE_PATH)
                cursor = conn.cursor()
                cursor.execute('''
                    INSERT INTO documents (id, filename, original_filename, category, similarity, ocr_text, upload_date, file_path)
                    VALUES (?, ?, ?, ?, ?, ?, ?, ?)
                ''', (document_id, saved_filename, file.filename, best_match, round(similarity, 3), 
                      ocr_text, datetime.now().isoformat(), os.path.join(UPLOADS_DIR, saved_filename)))
                conn.commit()
                conn.close()
                
                return jsonify({
                    "status": "success",
                    "category": best_match,
                    "similarity": round(similarity, 3),
                    "confidence": "high",
                    "matches": matches,
                    "document_saved": True,
                    "document_id": document_id
                })
            else:
                return jsonify({
                    "status": "low_confidence",
                    "category": best_match,
                    "similarity": round(similarity, 3),
                    "confidence": "low",
                    "matches": matches,
                    "document_saved": False
                })
        
        return jsonify({"error": "Document not recognized"}), 400
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route("/api/categories", methods=["GET"])
def get_categories():
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    categories = list(set(labels))  # Remove duplicates
    category_counts = {}
    for label in labels:
        category_counts[label] = category_counts.get(label, 0) + 1
    
    return jsonify({"categories": categories, "counts": category_counts})

@app.route("/api/documents/<category>", methods=["GET"])
def get_documents_by_category(category):
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()
    cursor.execute('SELECT * FROM documents WHERE category = ? ORDER BY upload_date DESC', (category,))
    documents = []
    for row in cursor.fetchall():
        documents.append({
            "id": row[0],
            "filename": row[1],
            "original_filename": row[2],
            "category": row[3],
            "similarity": row[4],
            "ocr_text": row[5],
            "upload_date": row[6],
            "file_path": row[7]
        })
    conn.close()
    
    return jsonify({"documents": documents, "count": len(documents)})

@app.route("/api/documents/<document_id>", methods=["DELETE"])
def delete_document(document_id):
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    try:
        conn = sqlite3.connect(DATABASE_PATH)
        cursor = conn.cursor()
        
        # Get document info first
        cursor.execute('SELECT file_path FROM documents WHERE id = ?', (document_id,))
        result = cursor.fetchone()
        
        if not result:
            conn.close()
            return jsonify({"error": "Document not found"}), 404
        
        file_path = result[0]
        
        # Delete physical file
        if file_path and os.path.exists(file_path):
            os.remove(file_path)
        
        # Delete from database
        cursor.execute('DELETE FROM documents WHERE id = ?', (document_id,))
        conn.commit()
        conn.close()
        
        return jsonify({"message": "Document deleted successfully", "status": "success"})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route("/api/ocr", methods=["POST"])
def ocr_document():
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    try:
        file = request.files.get("file")
        if not file:
            return jsonify({"error": "Missing file"}), 400

        file_content = file.read()
        if file.content_type and file.content_type.startswith('application/pdf'):
            image = image_from_pdf(file_content)
        else:
            image = Image.open(io.BytesIO(file_content))

        if image is None:
            return jsonify({"error": "Failed to process image"}), 400

        text = extract_text(image)
        return jsonify({"text": text, "status": "success"})
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route("/api/stats", methods=["GET"])
def get_stats():
    # Verify token
    auth_header = request.headers.get('Authorization')
    if not auth_header or not auth_header.startswith('Bearer '):
        return jsonify({"error": "Missing or invalid token"}), 401
    
    token = auth_header.split(' ')[1]
    username = verify_token(token)
    if not username:
        return jsonify({"error": "Invalid token"}), 401
    
    conn = sqlite3.connect(DATABASE_PATH)
    cursor = conn.cursor()
    cursor.execute('SELECT category, COUNT(*) FROM documents GROUP BY category')
    category_stats = dict(cursor.fetchall())
    
    cursor.execute('SELECT COUNT(*) FROM documents')
    total_documents = cursor.fetchone()[0]
    conn.close()
    
    return jsonify({
        "total_categories": len(set(labels)),
        "total_documents": total_documents,
        "category_distribution": category_stats
    })

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)