Spaces:
Sleeping
Sleeping
File size: 14,706 Bytes
ed74fda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Depends, status
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
import pytesseract
from PIL import Image
import numpy as np
import faiss
import os
import pickle
from pdf2image import convert_from_bytes
import torch
import clip
import io
import json
import uuid
from datetime import datetime, timedelta
from typing import List, Dict, Any, Optional
import base64
import jwt
from passlib.context import CryptContext
app = FastAPI(title="Handwritten Archive Document Digitalization System")
# Security configuration
SECRET_KEY = "your-secret-key-change-this-in-production"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")
security = HTTPBearer()
# Default admin user (change in production)
USERS_DB = {
"admin": {
"username": "admin",
"hashed_password": pwd_context.hash("admin123"),
"is_active": True
}
}
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# --- Load or Initialize Model/Index ---
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device)
INDEX_PATH = "data/index.faiss"
LABELS_PATH = "data/labels.pkl"
DOCUMENTS_PATH = "data/documents.json"
UPLOADS_DIR = "data/uploads"
# Ensure directories exist
os.makedirs("data", exist_ok=True)
os.makedirs("static", exist_ok=True)
os.makedirs(UPLOADS_DIR, exist_ok=True)
# Initialize index and labels with error handling
index = faiss.IndexFlatL2(512)
labels = []
documents = []
if os.path.exists(INDEX_PATH) and os.path.exists(LABELS_PATH):
try:
index = faiss.read_index(INDEX_PATH)
with open(LABELS_PATH, "rb") as f:
labels = pickle.load(f)
print(f"β
Loaded existing index with {len(labels)} labels")
except (RuntimeError, EOFError, pickle.UnpicklingError) as e:
print(f"β οΈ Failed to load existing index: {e}")
print("π Starting with fresh index")
if os.path.exists(INDEX_PATH):
os.remove(INDEX_PATH)
if os.path.exists(LABELS_PATH):
os.remove(LABELS_PATH)
# Load documents database
if os.path.exists(DOCUMENTS_PATH):
try:
with open(DOCUMENTS_PATH, 'r') as f:
documents = json.load(f)
except:
documents = []
# Authentication functions
def verify_password(plain_password, hashed_password):
return pwd_context.verify(plain_password, hashed_password)
def get_password_hash(password):
return pwd_context.hash(password)
def authenticate_user(username: str, password: str):
user = USERS_DB.get(username)
if not user or not verify_password(password, user["hashed_password"]):
return False
return user
def create_access_token(data: dict, expires_delta: Optional[timedelta] = None):
to_encode = data.copy()
if expires_delta:
expire = datetime.utcnow() + expires_delta
else:
expire = datetime.utcnow() + timedelta(minutes=15)
to_encode.update({"exp": expire})
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
return encoded_jwt
async def get_current_user(credentials: HTTPAuthorizationCredentials = Depends(security)):
credentials_exception = HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Could not validate credentials",
headers={"WWW-Authenticate": "Bearer"},
)
try:
payload = jwt.decode(credentials.credentials, SECRET_KEY, algorithms=[ALGORITHM])
username: str = payload.get("sub")
if username is None:
raise credentials_exception
except jwt.PyJWTError:
raise credentials_exception
user = USERS_DB.get(username)
if user is None:
raise credentials_exception
return user
# --- Utilities ---
def save_index():
try:
os.makedirs("data", exist_ok=True)
faiss.write_index(index, INDEX_PATH)
with open(LABELS_PATH, "wb") as f:
pickle.dump(labels, f)
except Exception as e:
print(f"β Failed to save index: {e}")
def save_documents():
try:
with open(DOCUMENTS_PATH, 'w') as f:
json.dump(documents, f, indent=2)
except Exception as e:
print(f"β Failed to save documents: {e}")
def image_from_pdf(pdf_bytes):
try:
images = convert_from_bytes(pdf_bytes, dpi=200)
return images[0]
except Exception as e:
print(f"β PDF conversion error: {e}")
return None
def extract_text(image):
try:
if image is None:
return "β No image provided"
if isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
elif not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text.strip() if text.strip() else "β No text detected"
except Exception as e:
return f"β OCR error: {str(e)}"
def get_clip_embedding(image):
try:
if image is None:
return None
if isinstance(image, bytes):
image = Image.open(io.BytesIO(image))
elif not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image_input = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()[0]
except Exception as e:
print(f"β CLIP embedding error: {e}")
return None
def save_uploaded_file(file_content: bytes, filename: str) -> str:
file_id = str(uuid.uuid4())
file_extension = os.path.splitext(filename)[1]
saved_filename = f"{file_id}{file_extension}"
file_path = os.path.join(UPLOADS_DIR, saved_filename)
with open(file_path, 'wb') as f:
f.write(file_content)
return saved_filename
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def dashboard():
with open("static/index.html", "r") as f:
return HTMLResponse(content=f.read())
@app.post("/api/login")
async def login(username: str = Form(...), password: str = Form(...)):
user = authenticate_user(username, password)
if not user:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password"
)
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_access_token(
data={"sub": user["username"]}, expires_delta=access_token_expires
)
return {"access_token": access_token, "token_type": "bearer", "username": user["username"]}
@app.post("/api/upload-category")
async def upload_category(
file: UploadFile = File(...),
label: str = Form(...),
current_user: dict = Depends(get_current_user)
):
try:
if not label or not label.strip():
raise HTTPException(status_code=400, detail="Please provide a label")
label = label.strip()
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
embedding = get_clip_embedding(image)
if embedding is None:
raise HTTPException(status_code=400, detail="Failed to generate embedding")
index.add(np.array([embedding]))
labels.append(label)
save_index()
return {"message": f"β
Added category '{label}' (Total: {len(labels)} categories)", "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/classify-document")
async def classify_document(
file: UploadFile = File(...),
current_user: dict = Depends(get_current_user)
):
try:
if len(labels) == 0:
raise HTTPException(status_code=400, detail="No categories in database. Please add some first.")
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
embedding = get_clip_embedding(image)
if embedding is None:
raise HTTPException(status_code=400, detail="Failed to generate embedding")
# Search for top 3 matches
k = min(3, len(labels))
D, I = index.search(np.array([embedding]), k=k)
if len(labels) > 0 and I[0][0] < len(labels):
similarity = 1 - D[0][0]
confidence_threshold = 0.35
best_match = labels[I[0][0]]
matches = []
for i in range(min(k, len(D[0]))):
if I[0][i] < len(labels):
sim = 1 - D[0][i]
matches.append({"category": labels[I[0][i]], "similarity": round(sim, 3)})
# Save classified document
if similarity >= confidence_threshold:
saved_filename = save_uploaded_file(file_content, file.filename)
ocr_text = extract_text(image)
document = {
"id": str(uuid.uuid4()),
"filename": saved_filename,
"original_filename": file.filename,
"category": best_match,
"similarity": round(similarity, 3),
"ocr_text": ocr_text,
"upload_date": datetime.now().isoformat(),
"file_path": os.path.join(UPLOADS_DIR, saved_filename)
}
documents.append(document)
save_documents()
return {
"status": "success",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "high" if similarity >= confidence_threshold else "low",
"matches": matches,
"document_saved": True,
"document_id": document["id"]
}
else:
return {
"status": "low_confidence",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "low",
"matches": matches,
"document_saved": False
}
raise HTTPException(status_code=400, detail="Document not recognized")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/categories")
async def get_categories(current_user: dict = Depends(get_current_user)):
categories = list(set(labels)) # Remove duplicates
category_counts = {}
for label in labels:
category_counts[label] = category_counts.get(label, 0) + 1
return {"categories": categories, "counts": category_counts}
@app.get("/api/documents/{category}")
async def get_documents_by_category(
category: str,
current_user: dict = Depends(get_current_user)
):
category_documents = [doc for doc in documents if doc["category"] == category]
return {"documents": category_documents, "count": len(category_documents)}
@app.get("/api/documents")
async def get_all_documents(current_user: dict = Depends(get_current_user)):
return {"documents": documents, "count": len(documents)}
@app.delete("/api/documents/{document_id}")
async def delete_document(
document_id: str,
current_user: dict = Depends(get_current_user)
):
try:
# Find document
document_index = None
document_to_delete = None
for i, doc in enumerate(documents):
if doc["id"] == document_id:
document_index = i
document_to_delete = doc
break
if document_to_delete is None:
raise HTTPException(status_code=404, detail="Document not found")
# Delete physical file
file_path = document_to_delete.get("file_path")
if file_path and os.path.exists(file_path):
os.remove(file_path)
# Remove from documents list
documents.pop(document_index)
save_documents()
return {"message": "Document deleted successfully", "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/ocr")
async def ocr_document(
file: UploadFile = File(...),
current_user: dict = Depends(get_current_user)
):
try:
file_content = await file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
raise HTTPException(status_code=400, detail="Failed to process image")
text = extract_text(image)
return {"text": text, "status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/api/stats")
async def get_stats(current_user: dict = Depends(get_current_user)):
category_stats = {}
for doc in documents:
category = doc["category"]
if category not in category_stats:
category_stats[category] = 0
category_stats[category] += 1
return {
"total_categories": len(set(labels)),
"total_documents": len(documents),
"category_distribution": category_stats
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|