handwritten / app.py
IZERE HIRWA Roger
pxx
87cd19e
from flask import Flask, request, jsonify, send_from_directory
from werkzeug.utils import secure_filename
from werkzeug.security import generate_password_hash, check_password_hash
import pytesseract
from PIL import Image
import numpy as np
import faiss
import os
import pickle
from pdf2image import convert_from_bytes
import torch
import clip
import io
import json
import uuid
from datetime import datetime, timedelta
import jwt
import sqlite3
import tempfile
import base64
from io import BytesIO
from transformers import AutoModelForImageTextToText, AutoProcessor, AutoTokenizer, TextIteratorStreamer
from threading import Thread
import time
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your-secret-key-change-this-in-production'
# Security configuration
SECRET_KEY = "your-secret-key-change-this-in-production"
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30
# Set CLIP cache to writable directory
os.environ['CLIP_CACHE'] = '/app/clip_cache'
os.makedirs('/app/clip_cache', exist_ok=True)
# Directories
INDEX_PATH = "data/index.faiss"
LABELS_PATH = "data/labels.pkl"
DATABASE_PATH = "data/documents.db"
UPLOADS_DIR = "data/uploads"
os.makedirs("data", exist_ok=True)
os.makedirs("static", exist_ok=True)
os.makedirs(UPLOADS_DIR, exist_ok=True)
# Initialize database
def init_db():
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
# Users table
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password_hash TEXT NOT NULL,
is_active BOOLEAN DEFAULT TRUE
)
''')
# Documents table
cursor.execute('''
CREATE TABLE IF NOT EXISTS documents (
id TEXT PRIMARY KEY,
filename TEXT NOT NULL,
original_filename TEXT NOT NULL,
category TEXT NOT NULL,
similarity REAL NOT NULL,
ocr_text TEXT,
upload_date TEXT NOT NULL,
file_path TEXT NOT NULL
)
''')
# Insert default admin user if not exists
cursor.execute('SELECT * FROM users WHERE username = ?', ('admin',))
if not cursor.fetchone():
admin_hash = generate_password_hash('admin123')
cursor.execute('INSERT INTO users (username, password_hash) VALUES (?, ?)',
('admin', admin_hash))
conn.commit()
conn.close()
init_db()
# Initialize index and labels
index = faiss.IndexFlatL2(512)
labels = []
if os.path.exists(INDEX_PATH) and os.path.exists(LABELS_PATH):
try:
index = faiss.read_index(INDEX_PATH)
with open(LABELS_PATH, "rb") as f:
labels = pickle.load(f)
print(f"βœ… Loaded existing index with {len(labels)} labels")
except Exception as e:
print(f"⚠️ Failed to load existing index: {e}")
if os.path.exists(INDEX_PATH):
os.remove(INDEX_PATH)
if os.path.exists(LABELS_PATH):
os.remove(LABELS_PATH)
# Initialize CLIP model with custom cache
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
clip_model, preprocess = clip.load("ViT-B/32", device=device, download_root='/app/clip_cache')
print("βœ… CLIP model loaded successfully")
except Exception as e:
print(f"❌ Failed to load CLIP model: {e}")
# Fallback initialization
clip_model = None
preprocess = None
# Initialize Nanonets OCR model
ocr_model = None
ocr_processor = None
ocr_tokenizer = None
try:
model_path = "nanonets/Nanonets-OCR-s"
print("Loading Nanonets OCR model...")
ocr_model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
ocr_model.eval()
ocr_processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
ocr_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("βœ… Nanonets OCR model loaded successfully!")
except Exception as e:
print(f"❌ Failed to load Nanonets OCR model: {e}")
print("πŸ“ Falling back to pytesseract for OCR")
# Helper functions
def save_index():
try:
faiss.write_index(index, INDEX_PATH)
with open(LABELS_PATH, "wb") as f:
pickle.dump(labels, f)
except Exception as e:
print(f"❌ Failed to save index: {e}")
def authenticate_user(username: str, password: str):
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute('SELECT password_hash FROM users WHERE username = ? AND is_active = TRUE', (username,))
result = cursor.fetchone()
conn.close()
if result and check_password_hash(result[0], password):
return {"username": username}
return None
def create_access_token(data: dict):
expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
to_encode = data.copy()
to_encode.update({"exp": expire})
return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
def verify_token(token: str):
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
username = payload.get("sub")
return username if username else None
except jwt.PyJWTError:
return None
def image_from_pdf(pdf_bytes):
try:
images = convert_from_bytes(pdf_bytes, dpi=200)
return images[0]
except Exception as e:
print(f"❌ PDF conversion error: {e}")
return None
def process_tags(content: str) -> str:
"""Process special tags from Nanonets OCR output"""
content = content.replace("<img>", "&lt;img&gt;")
content = content.replace("</img>", "&lt;/img&gt;")
content = content.replace("<watermark>", "&lt;watermark&gt;")
content = content.replace("</watermark>", "&lt;/watermark&gt;")
content = content.replace("<page_number>", "&lt;page_number&gt;")
content = content.replace("</page_number>", "&lt;/page_number&gt;")
content = content.replace("<signature>", "&lt;signature&gt;")
content = content.replace("</signature>", "&lt;/signature&gt;")
return content
def encode_image(image: Image) -> str:
"""Encode image to base64 for Nanonets OCR"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def nanonets_ocr_extract(image):
"""Extract text using Nanonets OCR model"""
try:
if ocr_model is None or ocr_processor is None or ocr_tokenizer is None:
# Fallback to py tesseract
return extract_text_pytesseract(image)
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize image for optimal processing
image = image.resize((2048, 2048))
# Prepare prompt for OCR extraction
user_prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and β˜‘ for check boxes."""
# Format messages for the model
formatted_messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": user_prompt},
]},
]
# Apply chat template
text = ocr_processor.apply_chat_template(
formatted_messages,
tokenize=False,
add_generation_prompt=True
)
# Process inputs
inputs = ocr_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
)
# Move inputs to model device
inputs = {k: v.to(ocr_model.device) if hasattr(v, 'to') else v for k, v in inputs.items()}
# Generate text
with torch.no_grad():
generated_ids = ocr_model.generate(
**inputs,
max_new_tokens=4096,
do_sample=False,
pad_token_id=ocr_tokenizer.eos_token_id,
)
# Decode the generated text
generated_text = ocr_tokenizer.decode(
generated_ids[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
# Process special tags
processed_text = process_tags(generated_text)
return processed_text.strip() if processed_text.strip() else "❓ No text detected"
except Exception as e:
print(f"❌ Nanonets OCR error: {e}")
# Fallback to pytesseract
return extract_text_pytesseract(image)
def extract_text_pytesseract(image):
"""Fallback OCR using pytesseract"""
try:
if image.mode != 'RGB':
image = image.convert('RGB')
custom_config = r'--oem 3 --psm 6'
text = pytesseract.image_to_string(image, config=custom_config)
return text.strip() if text.strip() else "❓ No text detected"
except Exception as e:
return f"❌ OCR error: {str(e)}"
def extract_text(image):
"""Main OCR function - tries Nanonets first, falls back to pytesseract"""
if ocr_model is not None:
return nanonets_ocr_extract(image)
else:
return extract_text_pytesseract(image)
def get_clip_embedding(image):
try:
if clip_model is None:
return None
if image.mode != 'RGB':
image = image.convert('RGB')
image_input = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_input)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy()[0]
except Exception as e:
print(f"❌ CLIP embedding error: {e}")
return None
def save_uploaded_file(file_content: bytes, filename: str) -> str:
file_id = str(uuid.uuid4())
file_extension = os.path.splitext(filename)[1]
saved_filename = f"{file_id}{file_extension}"
file_path = os.path.join(UPLOADS_DIR, saved_filename)
with open(file_path, 'wb') as f:
f.write(file_content)
return saved_filename
# Routes
@app.route("/")
def dashboard():
return send_from_directory('static', 'index.html')
@app.route("/static/<path:filename>")
def static_files(filename):
return send_from_directory('static', filename)
@app.route("/api/login", methods=["POST"])
def login():
username = request.form.get("username")
password = request.form.get("password")
user = authenticate_user(username, password)
if not user:
return jsonify({"detail": "Incorrect username or password"}), 401
access_token = create_access_token(data={"sub": user["username"]})
return jsonify({"access_token": access_token, "token_type": "bearer", "username": user["username"]})
@app.route("/api/upload-category", methods=["POST"])
def upload_category():
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
try:
label = request.form.get("label")
file = request.files.get("file")
if not label or not file:
return jsonify({"error": "Missing label or file"}), 400
file_content = file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
return jsonify({"error": "Failed to process image"}), 400
embedding = get_clip_embedding(image)
if embedding is None:
return jsonify({"error": "Failed to generate embedding"}), 400
index.add(np.array([embedding]))
labels.append(label.strip())
save_index()
return jsonify({"message": f"βœ… Added category '{label}' (Total: {len(labels)} categories)", "status": "success"})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/classify-document", methods=["POST"])
def classify_document():
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
try:
if len(labels) == 0:
return jsonify({"error": "No categories in database. Please add some first."}), 400
file = request.files.get("file")
if not file:
return jsonify({"error": "Missing file"}), 400
file_content = file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
return jsonify({"error": "Failed to process image."}), 400
embedding = get_clip_embedding(image)
if embedding is None:
return jsonify({"error": "Failed to generate embedding"}), 400
k = min(3, len(labels))
D, I = index.search(np.array([embedding]), k=k)
if len(labels) > 0 and I[0][0] < len(labels):
# Convert numpy float32 to Python float for JSON serialization
similarity = float(1 - D[0][0])
confidence_threshold = 0.35
best_match = labels[I[0][0]]
matches = []
for i in range(min(k, len(D[0]))):
if I[0][i] < len(labels):
# Convert numpy float32 to Python float
sim = float(1 - D[0][i])
matches.append({"category": labels[I[0][i]], "similarity": round(sim, 3)})
# Save classified document to SQLite with enhanced OCR
if similarity >= confidence_threshold:
saved_filename = save_uploaded_file(file_content, file.filename)
ocr_text = extract_text(image) # Now uses Nanonets OCR
document_id = str(uuid.uuid4())
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO documents (id, filename, original_filename, category, similarity, ocr_text, upload_date, file_path)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (document_id, saved_filename, file.filename, best_match, round(similarity, 3),
ocr_text, datetime.now().isoformat(), os.path.join(UPLOADS_DIR, saved_filename)))
conn.commit()
conn.close()
return jsonify({
"status": "success",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "high",
"matches": matches,
"document_saved": True,
"document_id": document_id,
"ocr_preview": ocr_text[:200] + "..." if len(ocr_text) > 200 else ocr_text
})
else:
return jsonify({
"status": "low_confidence",
"category": best_match,
"similarity": round(similarity, 3),
"confidence": "low",
"matches": matches,
"document_saved": False
})
return jsonify({"error": "Document not recognized"}), 400
except Exception as e:
print(f"Classification error: {e}")
return jsonify({"error": str(e)}), 500
@app.route("/api/categories", methods=["GET"])
def get_categories():
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
categories = list(set(labels)) # Remove duplicates
category_counts = {}
for label in labels:
category_counts[label] = category_counts.get(label, 0) + 1
return jsonify({"categories": categories, "counts": category_counts})
@app.route("/api/documents/<category>", methods=["GET"])
def get_documents_by_category(category):
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute('SELECT * FROM documents WHERE category = ? ORDER BY upload_date DESC', (category,))
documents = []
for row in cursor.fetchall():
documents.append({
"id": row[0],
"filename": row[1],
"original_filename": row[2],
"category": row[3],
"similarity": row[4],
"ocr_text": row[5],
"upload_date": row[6],
"file_path": row[7]
})
conn.close()
return jsonify({"documents": documents, "count": len(documents)})
@app.route("/api/documents/<document_id>", methods=["DELETE"])
def delete_document(document_id):
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
try:
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
# Get document info first
cursor.execute('SELECT file_path FROM documents WHERE id = ?', (document_id,))
result = cursor.fetchone()
if not result:
conn.close()
return jsonify({"error": "Document not found"}), 404
file_path = result[0]
# Delete physical file
if file_path and os.path.exists(file_path):
os.remove(file_path)
# Delete from database
cursor.execute('DELETE FROM documents WHERE id = ?', (document_id,))
conn.commit()
conn.close()
return jsonify({"message": "Document deleted successfully", "status": "success"})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/ocr", methods=["POST"])
def ocr_document():
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
try:
file = request.files.get("file")
if not file:
return jsonify({"error": "Missing file"}), 400
file_content = file.read()
if file.content_type and file.content_type.startswith('application/pdf'):
image = image_from_pdf(file_content)
else:
image = Image.open(io.BytesIO(file_content))
if image is None:
return jsonify({"error": "Failed to process image"}), 400
# Use enhanced Nanonets OCR
text = extract_text(image)
# Determine OCR method used
ocr_method = "Nanonets OCR-s" if ocr_model is not None else "Pytesseract"
return jsonify({
"text": text,
"status": "success",
"ocr_method": ocr_method,
"enhanced_features": ocr_model is not None
})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route("/api/stats", methods=["GET"])
def get_stats():
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
return jsonify({"error": "Missing or invalid token"}), 401
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute('SELECT category, COUNT(*) FROM documents GROUP BY category')
category_stats = dict(cursor.fetchall())
cursor.execute('SELECT COUNT(*) FROM documents')
total_documents = cursor.fetchone()[0]
conn.close()
return jsonify({
"total_categories": len(set(labels)),
"total_documents": total_documents,
"category_distribution": category_stats
})
@app.route("/api/document-preview/<document_id>", methods=["GET"])
def get_document_preview(document_id):
# Verify token
auth_header = request.headers.get('Authorization')
if not auth_header or not auth_header.startswith('Bearer '):
# For image requests, try to get token from query params as fallback
token = request.args.get('token')
if not token:
return jsonify({"error": "Missing or invalid token"}), 401
username = verify_token(token)
else:
token = auth_header.split(' ')[1]
username = verify_token(token)
if not username:
return jsonify({"error": "Invalid token"}), 401
try:
conn = sqlite3.connect(DATABASE_PATH)
cursor = conn.cursor()
cursor.execute('SELECT file_path FROM documents WHERE id = ?', (document_id,))
result = cursor.fetchone()
conn.close()
if not result:
return jsonify({"error": "Document not found"}), 404
file_path = result[0]
if not os.path.exists(file_path):
return jsonify({"error": "File not found"}), 404
return send_from_directory(os.path.dirname(file_path), os.path.basename(file_path))
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)