ocrtest / app.py
IZERE HIRWA Roger
k
a2d3600
raw
history blame
989 Bytes
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import torch
import gradio as gr
# Load model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
# Define prediction function
def recognize_text(image):
image = Image.fromarray(image).convert("RGB")
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return text
# Create Gradio interface
interface = gr.Interface(
fn=recognize_text,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=gr.Textbox(label="Recognized Text"),
title="Handwritten Text Recognition",
description="Upload an image of handwritten text to recognize it using TrOCR.",
)
# Launch interface
interface.launch(share=True)