OCR-APP / ocr_using_qwenvl_by_ps.py
profchaos's picture
Upload ocr_using_qwenvl_by_ps.py
e799756 verified
raw
history blame
4.07 kB
# -*- coding: utf-8 -*-
"""OCR_using_QwenVL_by_PS.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1lNLVl8FzVRrSv4dMd9vXqnz8SYtKoebf
"""
# Import libraries
import cv2
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
import torch
from byaldi import RAGMultiModalModel
from google.colab import files
from IPython.display import display, HTML
import os
import re
# to detect cuda(GPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
#loading models
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali", verbose=0)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
torch.cuda.empty_cache()
#Upload image
# def upload_image():
# uploaded = files.upload()
# for filename in uploaded.keys():
# print(f'Uploaded file: {filename}')
# return filename
# image_path = upload_image()
# Preprocessing using OpenCV
def preprocess_image(image_path):
image = cv2.imread(image_path)
if image is None:
raise FileNotFoundError(f"Image not found at the path: {image_path}")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Maintain aspect ratio
height, width = gray.shape
if height > width:
new_height = 1024
new_width = int((width / height) * new_height)
else:
new_width = 1024
new_height = int((height / width) * new_width)
resized_image = cv2.resize(gray, (new_width, new_height))
blurred = cv2.GaussianBlur(resized_image, (5, 5), 0)
thresholded = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)
denoised = cv2.fastNlMeansDenoising(thresholded, h=30)
pil_image = Image.fromarray(denoised)
return pil_image
# Call the function and store the result
# pil_image = preprocess_image(image_path)
# display(pil_image) # Now pil_image is accessible here
#extract the text
def extract_text(image_path):
try:
processed_image = preprocess_image(image_path)
messages = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "PLease extract the both hindi and english text as they appear in the image"}]}
]
text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=[text_prompt], images=[processed_image], padding=True, return_tensors="pt").to(device)
output_ids = model.generate(**inputs, max_new_tokens=1042)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
extracted_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
return extracted_text
except Exception as e:
return f"An error occurred during text extraction: {e}"
#keyword searching
def keyword_search(extracted_text, keywords):
if not keywords:
return extracted_text, "Please enter a keyword to search and highlight."
keywords = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
highlighted_text = ""
lines = extracted_text.split('\n')
for line in lines:
for keyword in keywords:
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
line = pattern.sub(lambda m: f'<span style="color: red;">{m.group()}</span>', line)
highlighted_text += line + '\n'
return highlighted_text
#OCR and keyword search interface
def ocr_interface(image):
image_path = "temp_image.png"
image.save(image_path)
extracted_text = extract_text(image_path)
os.remove(image_path)
return extracted_text, ""
def keyword_interface(extracted_text, keywords):
highlighted_text = keyword_search(extracted_text, keywords)
return highlighted_text